PROGRAMA DE ENGENHARIA DE SISTEMAS E COMPUTAÇÃO

Ementa das disciplinas – 2019/1° Versão 2

COS500 - Estágio a Docência

(Orientação Acadêmica) – Somente para Bolsista CAPES

COS501 – Estágio a Docência I

(Orientação Acadêmica) – Somente para Bolsista CAPES

COS700 – Teoria da Computação

Máquinas e linguagens. Funções computáveis e recursivas. Tese de Church. Problema da parada, etc. Conjuntos recursivos e recursivamente enumeráveis. Aplicações à programação.

COS702 – Probabilidade e Estatística

Motivações e exemplos. Noções básicas de probabilidade; definição axiomática; probabilidades conjuntas e condicionais. Regra de Bayes e teorema das probabilidades totais. Variáveis aleatórias; funções de distribuição e densidade de probabilidade (casos discreto e contínuo). Noções elementares sobre vetores aleatórios – conceitos básicos sobre distribuições conjuntas e condicionais (analogias com o caso escalar). Funções de variáveis aleatórias. Valores esperados – média, variância (desvio padrão) e momentos de ordem superior. Valores esperados conjuntos – correlação, covariância –, valores esperados condicionais e propriedades gerais. Definições e revisão dos principais conceitos sobre transformadas (z e Laplace) – leitura orientada. Funções características e geradoras de momentos. Somas de variáveis aleatórias. Desigualdades e teoremas de limites – Lei dos Grandes Números e Teorema do Limite Central. Processos Estocásticos – Introdução. Definições e noções básicas; tipos de processos estocásticos. Propriedades de processos estocásticos. Exemplos de processos estocásticos.

COS704 – Estrutura de Dados e Algoritmos

Conceitos básicos de complexidade, estudo do pior caso e de caso médio. Arrays. Técnicas de conquista por divisão. Merge Sort. Listas. Árvores binárias de busca, árvores AVL, árvores rubronegras, árvores de difusão. Filas de prioridade. Árvores B. Tabelas de espalhamento (hash tables).

COS705 – Teoria de Conjuntos e Lógica

Teoria de conjuntos: conjuntos, relações de ordem e equivalência, fechamento, conjuntos finitos e infinitos, noções de cardinalidade, conjuntos enumeráveis e não enumeráveis, Princípio da indução, princípio da diagonalização. Cálculo proposicional e de predicados: sintaxe, semântica (tabela verdade, tautologias, estrutura para linguagem de primeira ordem, consequência lógica, equivalência entre fórmulas), formas normais prenex (normal disjuntiva, normal conjuntiva e clausal), teorema da compacidade, cálculo dedutivo (dedução natural e resolução: estruturas de Herbrand, unificação, teorema de Robinson, teorema de Löwenheim-Skolem).

COS707 - Estudos Dirigidos ao M.Sc.

(Orientação Acadêmica)

COS708 – Pesquisa para Tese de M.Sc.

(Orientação Acadêmica)

COS721 – Controle e Qualidade de Software

Qualidade do processo. Qualidade do produto. Normas ISSO, CMM, CMMI, SPICE. Técnicas de avaliação da qualidade.

COS723 - Reutilização de Software

Introdução: definição, motivação, dificuldades, histórico, estado atual e gerência de reuso. Aspectos organizacionais e gerenciais. Engenharia de domínio e linha de produtos. Arquitetura de software. Desenvolvimento dirigido a modelos.

COS751 - Introdução à Computação Gráfica

Técnicas Básicas, Dispositivos Físicos de Exibição Gráfica e de Entrada de Dados, Traçado de Curvas em Dispositivos Matriciais, Transformações em 2D, Preenchimento de regiões. Sistemas gráficos. Representações 3-D. Transformações 3D: afins e projetivas. Eliminação de Superfícies Ocultas. Modelos de Iluminação. Realismo: "Ray-Tracing". Noções de modelagem de sólidos.

COS780 – Programação Linear

Modelos de programação linear. Forma-padrão. Solução gráfica. Conjuntos convexos. Pontos extremos e propriedades fundamentais. Condições de otimalidade. Algoritmo simplex. Degeneração. Dualidade em programação linear.

COS781 – Programação Não-linear I

Definição de problemas de programação não-linear irrestrita e com restrições. Métodos de Otimização para problemas sem restrições: busca linear (gradiente, Newton e quase-Newton) e regiões de confiança. Condições e Otimalidade em Programação Não-Linear com restrições.

Obs.: Os tópicos da álgebra linear computacional, pré-requisitos para esta disciplina, serão, se necessário, abordados no decorrer do curso.

COS807 – Estudos Dirigidos ao D.Sc.

(Orientação Acadêmica – até a qualificação)

COS808 – Pesquisa para Tese de D.Sc.

(Orientação Acadêmica – até a data da defesa)

COS820 – Tópicos Especiais em Engenharia de Software

Linhas de processos de software. Engenharia de Aplicação e Instanciação de Processos. Métricas para análise de similaridade de modelos de processo.

COS831 – Laboratório de Banco de Dados

Essa disciplina discute aspectos de gerência de dados em larga escala gerados como fluxos de dados. Serão discutidos modelos de representação de fluxos de dados nos níveis físico e lógico. Os problemas envolvidos nas etapas de geração, estruturação, armazenamento, extração e consulta a fluxos de dados serão discutidos levando em consideração o acesso a dados brutos (não estruturados). Serão analisadas diferentes abordagens para a publicação de dados e os conceitos ligados aos dados de proveniência. Discutiremos as técnicas mais recentes em bancos de dados quanto à gerência de dados científicos e as soluções disponíveis para experimentos de laboratório da disciplina. Serão abordados os desafios do processamento paralelo de dados em computadores com paralelismo em larga escala.

Pré-requisitos: COS833 ou COS604

COS833 – Distribuição e Paralelismo em Banco de Dados

Introdução aos conceitos de distribuição no contexto das tecnologias de gerência de bases de dados. Aspectos de arquiteturas de sistemas de banco de dados distribuídos. Projeto de bases de dados distribuídas. Apresentação de técnicas envolvidas no processamento distribuído de consultas. Características da gerência de transações. Tendências atuais enfocando os sistemas de banco de dados distribuídos orientados a objetos e os servidores de dados distribuídos. Características de processamento paralelo em sistemas de banco de dados. Algoritmos de processamento paralelo de consultas. Fragmentação e alocação de objetos. Avaliação de desempenho. Análise dos principais sistemas de banco de dados com processamento paralelo. Revisão de soluções escaláveis para a construção de servidores WEB escaláveis para várias classes de aplicações, incluindo mídia contínua, comércio eletrônico, aplicações científicas, redes sociais participativas e aplicações inovadoras de redes de sensores sem fio tais como monitoramento do meio ambiente, agricultura de precisão e controle urbano em diversos ambientes de redes de comunicação.

COS845 – Tópicos Especiais em Computação por Fluxo de Dados

Introduction and principles of Data Stream Processing; Description of the area; Typical applications Problems, design and implementation issues. Overview of the paradigm and Data Flow programming; Operator graphs; Flow manipulation: operator state, selectivity and parity § Punctuations; Windowing models; Time models; Language model. Stream Processing Systems: interfaces and runtime system; Apache Storm; Spark Streaming; Multicore and GPU frameworks SABER and StreamBox; Elastic and autonomic features, strategies for adaptivity; Elastic and autonomic features, mechanisms for state migration. The operator placement problem; Theory; Algorithms. Parallelism models in Stream Processing scenarios; Parallel patterns for windowed queries; Nesting and composition of patterns. Libraries for parallel stream processing on multicores; Introduction to FastFlow, its interface and runtime system; Reasoning in terms of patterns: the WindFlow library. Putting it all together; Practical examples to test the methodologies studied; Experience report.

Pré-requisito - COS760 – Arquiteturas Avançadas de Computadores

COS867 – Tópicos Especiais em Concorrência

Lógicas Modais, Lógicas Temporais, CTL e LTL, Álgebras de Processo, CCS e Verificação de Modelos.

Objetivos Gerais: Apresentar ao aluno técnicas automáticas de verificação de sistemas computacionais usando-se lógicas e álgebras de processo.

Conteúdo Programático:

UNIDADE I - Álgebras de Processo (CCS): sistemas rotulados de transição, linguagem do CCS, Semântica do CCS, Bissimulação Forte e Bissimulação Fraca.

UNIDADE II – Verificação de Modelos: Introdução à Lógica Modal, Lógicas Temporais CTL e LTL, Algoritmos de Verificação de Modelos, Algoritmos de Verificação de Modelos Simbólicos. O Verificador mCRL2.

Bibliografia:

Livro Texto - Communication and Concurrency, Robin Milner, Prentice Hall, 1989.

Model Checking - E. M. Clarke, O. Grumberg, and D. A. Peled, The MIT Press, 1999.

Modelling and Analysis of Communicating Systems, Jan Friso Groote and Mohammad Reza Mousavi, The MIT Press, 2014.

Pré-requisito: Ter feito um curso de Lógica.

COS868 – Probabilidade e Estatística para Aprendizado de Máquina

Introdução e conjuntos. Probabilidade e combinatória. Probabilidade condicional e teorema de Bayes. Variáveis aleatórias. Variância e esperança. Variáveis aleatórias contínuas. Teorema do limite central e Lei dos grandes números. Distribuições conjuntas, independência, covariância e correlação. Introdução a Estatística e likelihood. Inferência Bayesiana: predição probabilística, priors, distribuição Beta, conjugate priors. Frequentismo e teste de hipóteses. Intervalo de confiança. Bootstrap. Regressão linear.

COS876 – Aprendizado de Máquina e Análise de Dados em Sistemas Conectados

Sistemas interconectados em rede estão cada vez mais complexos e exigem técnicas sofisticadas de monitoramento, modelagem, implantação e operações. Ferramentas poderosas para análise de dados e aprendizado de máquina são uma grande promessa para melhorar a eficiência, o desempenho e a segurança de sistemas em rede. Neste curso, exploraremos tópicos como: Inferência Estatística e Aprendizado de Máquina (Machine Learning - ML) para análise de séries temporais de dados de rede; ML para operações de rede distribuídas, como armazenamento em cache e balanceamento de carga; Inferência estatística e aprendizado para distinguir entre tráfego normal e de ataque para proteção contra DDoS; Aprendizagem para controle de Congestionamento e adaptação de taxa de transmissão de vídeo; Inferência Estatística e ML para gerenciamento eficiente de energia em data centers; ML para melhorar a Qualidade de Experiência em redes.

O curso será todo baseado em artigos científicos recentes, e é esperado que o aluno possa entender apresentações em Inglês para interagir com alunos e professores da Universidade de Massachusetts.

Pré-requisito: Probabilidade e Estatística.

COS888 – Álgebra Linear Computacional de Alto Desempenho

Espaço Vetorial. Transformações Lineares. Subespaço Linear. Ortogonalidade. Autovalores e Auto vetores. Matrizes positivas semi-definidas. Mínimos Quadrados e Pseudo-inversa. Decomposições QR e SVD. Apresentação e prática das bibliotecas de Álgebra Linear de Alto Desempenho.

Bibliografia:

- 1. Sheldon Axler, Linear Álgebra Done Right, Springer, 2014
- 2. Gilbert Strang, Introduction to Linear Algebra, Wellesley-Cambridge Press, 2016
- 3. Gene H. Golub, Charles F. Van Loan, Matrix Computations, JHU Press, 2013
- 4. Lloyd Nicholas Trefethen, David Bau, Numerical Linear Algebra, SIAM, 1997
- 5. Sítios e documentação das bibliotecas.

CPS730 – Internet das Coisas

Conceitos Básicos de IoT: Definições; Exemplos de aplicações; Principais Elementos em IoT; Esforços de padronização; Modelos de Comunicação. IoT como um Sistema Distribuído de Ultra Larga Escala. Plataformas para IoT: Requisitos não funcionais da IoT; Arquiteturas de referência para IoT; Plataformas de middleware para IoT. Desenvolvimento de aplicações usando plataformas de middleware para IoT.

CPS731 - Laboratório de Internet das Coisas

Introdução - Conceitos e Visão Geral da Internet das Coisas (IoT). Conceitos básicos de Programação de Dispositivos IoT. Eletrônica para IoT. Software para IoT. Usando Sensores e Periféricos. Integração e Gerenciamento de dispositivos via Web. Programação usando plataformas IoT (middleware para IoT). Desenvolvimento de aplicações usando plataformas de middleware para IoT.

CPS767 – Tópicos Especiais em Algoritmos de Monte Carlo e Cadeias de Markov

Desde da sua concepção na década de 40 algoritmos de Monte Carlo vem sendo utilizados para resolver diversos tipos de problemas, tais como problemas de amostragem e estimação, encontrando aplicações na Física, Biologia e Engenharia. Dentre suas muitas variações, algoritmos de Monte Carlo acoplados a cadeias de Markov (MCMC) estão entre os mais poderosos, tais como Metropolis-Hastings e simulated annealing. Com a crescente quantidade de dados e demanda por eficiência computacional, tais algoritmos vêm sendo usados como base de técnicas emergentes em Ciências dos Dados. Nesta disciplina iremos explorar diversos algoritmos de Monte Carlo com um enfoque teórico e fundamental, cobrindo teoria de cadeias de Markov e ilustrando com algumas aplicações práticas.

Ementa: Revisão de probabilidade. Desigualdades (de Markov, Chebyshev e Chernoff). Limitante da união. Método do primeiro momento. Lei dos grandes números. Método de Monte Carlo. Estimando somatórios e integração. Algoritmos de amostragem eficientes. Método da transformada inversa. Método da rejeição. Amostragem por importância. Cadeias de Markov. Propriedades, distribuição estacionária, convergência, reversibilidade, tempo de mistura, vão espectral, teorema ergódico. Simulação de cadeias de Markov. Gerando amostras. Metropolis-Hastings. Amostragem de Gibbs. Simulated annealing.

CPS831 - Gestão do Conhecimento

A natureza do Conhecimento e sua gestão. O uso do conhecimento na sociedade. Inteligência Organizacional. Estratégias para Gestão do Conhecimento. Tecnologias para Gestão do Conhecimento. Gestão do Conhecimento no trabalho científico.

CPS833 - Data Mining

Revisão de estatística básica (estatística descritiva, medidas e gráficos de dispersão, estimação, teste de hipóteses, ANOVA, e outros tópicos que são necessários para mineração de dados). Introdução a mineração de dados. Visão geral do processo de mineração de dados. Carga, transformação e limpeza dos dados (ETL). Principais tipos de métodos de mineração de dados. Visualização dos resultados. Agrupamento (Clustering). Regras de associação. Detecção de Outliers. Redes Neurais Artificiais. Mineração de dados espaciais. Aplicações. Experimentos. Apresentação de trabalhos.

CPS844 - Inteligência Computacional I

O problema de aprendizado: Introdução e motivação geral; esquema supervisionado e não supervisionado. Da amostra à população, é possível aprender? Introdução à classificação e regressão linear, estendendo modelos lineares através de transformações não-lineares. Medidas de erro e ruído. Treino e Teste, conceitos matemáticos; O que faz com que um modelo de aprendizado seja capaz de generalizar. Teoria da generalização: como um modelo aprende a partir de uma amostra? Resultados teóricos de generalização. VC dimension, relação de número de parâmetros e graus de liberdade na construção de modelos. Viés-Variância tradeoff, curvas de aprendizado. Revisitando os modelos lineares, Regressão logística, máxima verossimilhança e algoritmo de gradiente descendente.

Referência: Abu-Mostafa Y et al - 'Learning from Data' 2012.