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Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

ARCHIOTECT: AN AI-POWERED KNOWLEDGE-DRIVEN ASSISTANT FOR 10T
ARCHITECTURAL DESIGN

Fernando Novaes Ribeiro da Silva

September/2025

Advisor: Guilherme Horta Travassos
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The rapid expansion of the Internet of Things (IoT), amplified by the integration
of Artificial Intelligence (AloT), presents significant architectural complexities for
software system design. A critical gap persists in providing architects with accessible,
evidence-based guidance to navigate these challenges, often leading to suboptimal
designs and project failures. This dissertation addresses this gap by investigating the core
research question: "What loT application domains and characteristics of their sofiware
systems architectures influence Quality Requirements (QORs) and how this knowledge can
be systematically organized and offered to support the decision-making in loT software

systems projects?"

To answer this question, a Systematic Literature Review (SLR) was conducted,
analyzing 37 primary studies to distill actionable architectural knowledge. The primary
contribution of this work is twofold: first, the creation of a comprehensive and structured
Knowledge Base of IoT architectural solutions; and second, the development of
ArchloTec, a novel decision-support tool. ArchloTec provides a dual-modality interface,
allowing users to explore the knowledge base through both hierarchical browsing and a
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conversational Al assistant powered by a Retrieval-Augmented Generation (RAG)
architecture. This Al grounds its responses exclusively in the curated knowledge base,

ensuring domain-specific accuracy.

The tool's effectiveness, efficiency, and utility were validated through an
evaluation involving realistic design scenarios tailored for software architects and
engineers. The results demonstrate that ArchloTec successfully provides relevant and
actionable guidance. This research culminates in a tangible, knowledge-driven tool that
bridges the gap between fragmented academic theory and industry practice, empowering
architects to make more informed and effective design decisions for complex IoT

systems.
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1 Introduction

This chapter elaborates on the motivation and contextual
background that prompted this work. It further details the
study's objectives and the methodological approach
adopted, concluding with an overview of the dissertation’s

organization.

1.1 Motivation and Context

The Internet of Things continued its expansive trajectory in 2024, with a
notable increase in both the number of connected devices and overall enterprise
spending (loT Analytics, 2025). This growth, occurring within a period of
economic adjustment and a burgeoning focus on Al's role within 0T, brings with
it a fresh set of challenges and considerations for the design and development of
the underlying software systems. As new connectivity options emerge,
interoperability standards evolve, and regulatory landscapes adapt, the
architectural decisions made during the design phase become increasingly
critical (IoT Analytics, 2025). This chapter defines the central problem addressed
by this research, stemming from contemporary loT developments, and outlines
the specific research questions that this dissertation aims to answer to enhance

the architectural design process for loT software systems.

The increasing integration of Al into loT shifts the paradigm towards an
"AloT" (Artificial Intelligence of Things) (Global, 2021), further amplifying these
architectural complexities. While Al offers unprecedented capabilities for data
analysis, predictive maintenance, and autonomous decision-making within loT
(Soori et al.,, 2024), it also introduces new demands on system architecture
regarding data pipelines, model deployment, computational resources, and
explainability (Antoniadi et al., 2021). The shift from traditional loT applications to
more intelligent, data-driven systems need architectural patterns that can handle

vast volumes of heterogeneous data, support real-time processing, ensure robust



security and privacy, and facilitate seamless integration across diverse hardware

and software components (Raptis et al., 2019).

Despite the proliferation of loT platforms and development tools, a
significant challenge persists in providing architects and developers with
adequate support for making informed architectural decisions early in the design
lifecycle. Developer surveys consistently highlight difficulties in managing device
diversity, integrating disparate systems, and ensuring the security and
interoperability of end-to-end solutions (Eclipse Foundation, 2023). The lack of
comprehensive, easily accessible, and context-aware architectural guidance can
lead to suboptimal designs, increased development costs, longer time-to-market,
and systems that fail to meet critical quality requirements such as performance,
reliability, or maintainability (Bass et al., 2021). This gap is particularly acute given
the rapid evolution of 10T technologies and the diverse application domains, from
smart healthcare and industry 4.0 to smart cities and agriculture, each with unique

architectural needs and constraints (Gubbi et al., 2013).

This dissertation is motivated by this need, aiming to bridge the gap
between the vast body of available architectural knowledge and the practical

challenges faced by IoT system designers.

This chapter will further define the central problem addressed by this
research, which stems from the contemporary developments in IoT and the
identified gaps in architectural decision support. Subsequently, this dissertation
will outline the specific research questions it aims to address, to enhance the
architectural design process for loT software systems and ultimately contributing

to the development of more robust, efficient, and successful loT solutions.

1.2 Research Problem and Question

The Internet of Things (loT) is rapidly expanding, with over 18 billion
connected devices and significant investment by enterprises in 2024 (loT
Analytics, 2025). This growth underscores the critical role of robust software
architecture in ensuring the success of complex loT systems (Bass et al., 2021).

However, designing these architectures presents considerable challenges due to
2



the inherent heterogeneity of loT technologies, diverse application domains, and
the increasing integration of Atrtificial Intelligence (Al) (Atzori et al., 2010; Soori et
al., 2024).

Architects often struggle to select optimal architectural solutions that
effectively meet specific Quality Requirements (QRs), such as security,
performance, or scalability, tailored to the unique context of different loT
applications (Weyns, 2021). Developer surveys frequently highlight difficulties in
managing this complexity and ensuring interoperability (Eclipse Foundation,
2023). This highlights a significant gap: a lack of structured knowledge and
targeted decision support to guide architects in understanding how loT
application domain characteristics influence architectural choices for achieving
the desired QRs.

The consequences of this gap include suboptimal system designs,
increased development costs, and a higher risk of project failure, hindering the
full realization of loT's potential (Woods, 2018). Therefore, this research is
motivated by the need to address the problem of insufficient architectural decision
support in the complex and evolving loT landscape. It aims to investigate the
relationships between loT application domains, their architectural solutions’
characteristics, and QRs, to provide a foundation for more informed architectural

design.

To build a robust knowledge base for an application supporting decision-
making in the design phase of loT software system development projects, this
dissertation addresses the following research question: What lIoT application
domains and characteristics of their software systems architectures
influence Quality Requirements (QRs) and how this knowledge can be
systematically organized and offered to support the decision-making in loT

software systems projects?

1.3 Objective

The primary objective of this work is to develop and evaluate a novel

application designed to provide an intelligent decision support application during
3



the architectural design phase of Internet of Things (loT) software systems. This

overarching goal is decomposed into the following specific objectives:

1. Design and implement a comprehensive Knowledge Base (KB)

dedicated to loT software system architectures. This objective

involves:

Systematically identifying, collecting, and structuring diverse
architectural solutions, design principles, Quality Requirements
(QRs) (e.g., security, performance, scalability, interoperability), and

relevant technologies pertinent to 0T systems.

Establishing a formal schema for the KB to ensure consistent
representation, semantic interoperability, and efficient querying of

architectural knowledge.

Populating the KB with curated data from peer-reviewed literature,
established reference architectures, industry best practices, and

empirical studies.

2. Develop an Al-based decision support tool that leverages the

Knowledge Base. This objective encompasses:

Designing algorithms that enable the Al-based module to process
project-specific requirements (e.g., application domain, target QRs,

resource constraints) as input.

Implementing functionalities within the Al-based module to query
the KB, reason over the stored architectural knowledge, and
generate context-aware architectural suggestions, trade-off

analyses, or potential design flaw identifications.

Integrating the Knowledge Base and the Al-based Decision Support
Module into a cohesive system involves ensuring seamless data
flow and interaction between the KB and the Al-based module to

facilitate effective decision support.



To evaluate the effectiveness and utility of the proposed framework in
supporting architectural decision-making for 0T software systems. This objective

will be pursued by:

e Defining appropriate evaluation metrics (e.g., quality of
recommendations, reduction in design time, coverage of QRs, user

satisfaction).

e Conducting experimental studies involving representative loT
software system design scenarios to assess the framework's

performance and practical applicability.

e Gathering feedback from domain experts or software architects to
observe the relevance and usefulness of the generated decision

support.

By achieving these objectives, this research aims to contribute to a robust,
knowledge-driven tool that empowers software architects and developers to
make more informed, efficient, and effective decisions when designing complex
loT software system architectures, ultimately leading to higher quality and more

successful loT solutions.

1.4 Methodology

This study's primary aim is to explore and identify the Quality
Requirements (QRs) commonly observed in Internet of Things (loT) software
system architectures, by comprehensively analyzing those identified in primary
sources. The characterization of these IoT software systems, regarding
application domains and other QRs (such as security, performance,
maintainability, and compatibility), is conducted from the perspective of software
engineering researchers, drawing upon existing knowledge in technical literature.
To deepen understanding, the main research question was subdivided into five

secondary questions (as detailed in Table 2).

The methodological approach adopted to achieve the proposed objectives
consisted of a Systematic Literature Review (SLR), partially following the
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guidelines for Literature Search (LS) proposed by Kuhrmann et al. (2017) and

incorporating the Snowballing technique (Woéhlin, 2014). The process steps are

detailed below.

The primary data source for identifying primary studies was the Scopus

database (www.scopus.com). The articles’ search and selection processes were

conducted in the following phases:

Initial Search and First Snowballing Cycle: An initial search was
performed, using a search string inspired by the PICO format (detailed
in Table 4). A temporal scope was considered, in line with the work of
Alreshidi and Ahmad (2019), focusing on architectural design solutions
that influence QRs in loT software systems. A set of papers was
selected as starting points for applying the Snowballing technique (one
level backward and one level forward). As a result of this first
Snowballing round, an initial set of articles was identified, of which two

were deemed relevant and aligned with the objectives of this study.

Refined Search and Second Snowballing Cycle: Subsequent searches
and refinements were performed, incorporating search terms derived
from related works (Alreshidi & Ahmad, 2019; Razzaq, 2020). A
broader search was conducted in the Scopus database, and the result
served as the basis for executing a new Snowballing cycle (one level

backward and one level forward).

String updated and Third Snowballing Cycle: To identify more recent

articles, the search string was re-run in the Scopus database.

Study Inclusion and Exclusion Criteria: Following a rigorous selection
process, primary studies were included in this review if they specifically
addressed architectural design solutions influencing Quality
Requirements (QRs) in loT software systems, were published from
2019 onwards, and directly aligned with the objectives and research
questions of this study. Articles failing to meet these criteria were

excluded from further analysis. After the final selection of primary



studies (resulting from the second Snowballing cycle), the relevant data

will be extracted to answer the research questions.

The analysis was conducted qualitatively, seeking to identify patterns,

architectural challenges, and relevant characteristics within the context of loT

software projects, as outlined by the five secondary research questions (Table 2).

| new run was
performed in Scopus.
The Search String
was refined based on
2 Related Works.

Literature Review

Y )
A

Literature Review
(Update)

Fa

We selected a set of
papers, extracted the
relevant data, and
built a curated
knowledge base.

o
~

The Al assistant's
approach was
evaluated for its
performance, utility,
and practical value to
architects and
engineers.

Fa O
h

What
application domains
and characteristics of
their loT software
systems
architectures
influence Quality
Requirements?

L
Literature Review
(Refined)

~

To ensure the
knowledge base
remains current, the
search date range
was extended to
include publications
up to 2024.

Knowledge Base

An Al-driven loT
Design Assistant that
utilizes the
knowledge corpus to
inform architectural
decision-making is
proposed and
developed.

~

Figure 1: Developing ArchloTect: A Knowledge-First Approach.

Figure 1 shows the research timeline, from the initial literature review to

the final tool evaluation. This process was divided into the following key stages:

Systematic Literature Review and Refinement: The initial phase
involved a broad literature review, followed by a systematic refinement process
to distill the most relevant, up-to-date, and impactful architectural knowledge from

academic and industry sources.

Systematic Literature Review Update: The search date range was
extended to 2024 to ensure the inclusion of the most recent publications and

maintain the currency of the knowledge base.

Knowledge Base Construction: This distilled information was then
organized into a comprehensive knowledge base, structuring complex topics like
communication protocols, security patterns, and data processing strategies into

a coherent, actionable model.

Tool Development - The ArchloTect Assistant: To make this knowledge
actionable, we engineered ArchloTect, the "loT Architectural Design Assistant."
This web application serves as an interactive interface to the knowledge base,

offering both a conversational Al and a hierarchical browsing experience.
7



Systematic Evaluation: The final stage involved a thorough evaluation of
the tool. By simulating real-world design challenges, we measured ArchloTect's
ability to provide effective, efficient, and user-friendly support to its target users,

software architects, and engineers.

1.5 Publications

Throughout the realization of this work, two publications were produced :

e Silva, F., de Souza, B., & Werner, C. (2021). Catalogo para Criagao de
Jogos Sérios para Sistemas Baseados em loT. In: Anais Estendidos
do XX Simpdsio Brasileiro de Jogos e Entretenimento Digital, (pp. 675-
678). Porto Alegre: SBC.
doi:10.5753/sbgames_estendido.2021.19705.

e Silva, F., Souza, B., & Travassos, G. (2024). A Literature Study on
Application Domains and IloT Software Systems Architectures
Solutions Influencing Quality Requirements. In: Anais do XXVII
Congresso Ibero-Americano em Engenharia de Software, (pp. 181-
195). Porto Alegre: SBC. doi:10.5753/cibse.2024.2844.

1.6 Text Organization

This dissertation is organized into four additional chapters, in addition to
this first one, which describes the introduction, motivation, and context of the

dissertation. The organization of this work follows the structure below:

Chapter 2 — Theoretical Foundation: Shows concepts directly related to

what is proposed in this dissertation.

Chapter 3 - Literature Review: Describes how the review was

conducted.

Chapter 4 — Proposal of this Dissertation: Presents the proposal,

knowledge base, and the loT Architectural Design Assistant.



Chapter 5 — Evaluating the Proposal of this Dissertation: This chapter
presents a TAM-based feasibility study of the ArchloTect tool.

Chapter 6 — Final Considerations and Future Perspectives: This
section presents the key findings and contributions of this work, in addition to

outlining future directions for this line of investigation.



2 Theoretical Foundation

The theoretical foundation for this dissertation is presented
in this chapter. Key areas explored include the
fundamentals of loT software system architecture, the
ISO/IEC 25010:2023 quality model, and the role of Large
Language Models (LLMs), particularly within Retrieval
Augmented Generation (RAG).

2.1 Quality Requirements

Imagine you are building something complex, like a custom race car. You
know it needs to do certain things — go fast, turn, stop. Those are its basic
functions. However, just "going fast" is not enough, right? You also care about
how well it does those things and other crucial aspects of its nature. This is where
the 25010 concept of quality requirements, as guided by a framework such as
ISO/IEC 25010 (ISO/IEC 25010, 2023), comes into play for software and

systems.

So, a quality requirement, in this narrative, is akin to selecting one of the
qualities from the master checklist (ISO/IEC 25010) and stating, "For my specific
race car, this particular quality needs to be this good." For instance, the ISO
checklist has a category called "Performance Efficiency." That is general.
However, underneath it, there is "Time behavior." Now we are getting
somewhere. A quality requirement for your race car, derived from this, would not
just be "it needs to be fast." It would be something much more precise, like: "This
car must be able to accelerate from 0 to 100 kilometers per hour in under 3
seconds." That is specific, measurable, and clearly defines a target for that aspect
of performance. Similarly, the ISO checklist has "Reliability." A quality
requirement would not just be "it should not break down." It might be: "The engine
must be able to run at maximum RPM for at least four continuous hours without

critical failure." For "Security," instead of "it should be hard to steal," a quality
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requirement might be: "The car's ignition system must use encrypted key

authentication that resists known brute-force attacks for at least 24 hours."

So, ISO/IEC 25010:2023 provides the map of all possible "goodness"
attributes — like Performance Efficiency, Reliability, Security, Maintainability (how
easy is it to fix or upgrade?), Flexibility (can it adapt to different tracks or
conditions?), and even the newly added Safety (will it protect the driver in a

crash?).

A quality requirement, then, is for you, the architect or designer, to look at
that map and, for your specific project, plant a flag on certain attributes, saying,
"Here, for this attribute, we need to achieve this specific level of quality." It is
about translating those general quality concepts from the standard into concrete,
verifiable goals that guide how you design, build, and test your software or
system, ensuring it is not just functional, but truly excellent in the ways that matter
most for its intended purpose. It is the promise you make about how well your

creation will perform its duties and behave in the world.

2.2 loT Software Systems Architecture

The design of robust and effective Internet of Things (loT) software
systems depends critically on a well-defined architecture that can manage the
inherent complexity, heterogeneity, and scale of these interconnected
environments. An |loT software architecture provides the blueprint for structuring
the system, defining its components, their responsibilities, their interactions, and
the overall data flow from sensor data acquisition to application-level insights and
actions. Unlike traditional enterprise software architectures, loT architectures
must uniquely address challenges such as resource-constrained devices, diverse
communication protocols, massive data volumes, and stringent requirements for
security, reliability, and often real-time responsiveness (Gubbi et al. 2013; Atzori
et al. 2010).

A common conceptualization of loT architectures involves a layered
approach, which helps in managing complexity by separating concerns. While

specific implementations vary, a multi-layered model is frequently adopted,
11



typically encompassing layers for device interaction, network communication,

data processing, and application services.

2.2.1 Foundational Layered Architectural Models

A widely referenced architectural paradigm for loT systems is the three-

layer model, comprising the Perception (or Device) Layer, the Network Layer, and
the Application Layer (Sethi and Sarangi, 2017; Khan et al., 2012).

Perception/Device Layer: This foundational layer comprises the physical
"things" — sensors, actuators, RFID tags, smart devices — responsible for
interacting directly with the physical environment. Its primary functions
include data acquisition from sensors (e.g., temperature, motion, location)
and the execution of actions via actuators (e.g., controlling a valve,
adjusting a thermostat). The heterogeneity of devices and communication
protocols at this layer presents significant integration challenges (Gubbi et
al. 2013).

Network/Connectivity Layer: This layer is responsible for transmitting
the data collected by the Perception Layer to data processing systems and
for relaying commands from applications back to actuators. It
encompasses a wide array of communication technologies, including
short-range protocols (e.g., Bluetooth, Zigbee, Wi-Fi), long-range wide-
area networks (LPWANs like LoRaWAN, Sigfox, NB-IoT), cellular
networks (4G/5G), and wired connections (Al-Fugaha et al., 2015; Sethi
and Sarangi, 2017). Ensuring reliable, secure, and energy-efficient data

transmission is a key concern for this layer.

Application Layer: This is the topmost layer, responsible for delivering
specific services and value to the end-users or other systems. It hosts 0T
applications tailored to various domains, including smart cities, healthcare,
and industrial automation. This layer processes and analyzes the data
received from the network layer to provide insights, trigger actions, and

present information through user interfaces or APIs (Khan et al., 2012).
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To address more complex scenarios and the increasing need for

intermediate data processing, more granular layered models have been

proposed, such as five-layer architectures. These often introduce a Processing

Layer (or Middleware Layer) between the Network and Application layers, and

sometimes a Business Layer on top (Sethi and Sarangi, 2017; Wu et al., 2010).

Processing/Middleware Layer: This layer is crucial for managing and
processing the vast amounts of data generated by IoT devices before it
reaches the application layer. Its functions include data filtering,
aggregation, abstraction, semantic analysis, and often storage in
databases. Middleware platforms play a vital role in providing device
management, data normalization, and service discovery (Al-Fugaha et al.
2015; Bandyopadhyay and Sen 2011).

Business Layer (Optional): This layer manages the overall 0T system
activities and services from a business perspective, including data
analytics for business intelligence, process optimization, and decision-
making based on the insights derived from the application layer (Sethi and
Sarangi, 2017).

2.2.1.1 Emerging Architectural Paradigms: Edge, Fog, and Cloud Computing

Traditional layered models are increasingly being augmented and

sometimes reconfigured by distributed computing paradigms, such as Edge, Fog,

and Cloud computing, which address specific 0T challenges, including latency,
bandwidth, and data privacy (Shi et al. 2016; Bonomi et al. 2012).

Cloud Computing: Serves as a centralized platform for extensive data
storage, powerful data analytics, complex event processing, and scalable
application hosting. Cloud platforms (e.g., AWS IloT, Azure loT Hub,
Google Cloud IoT) offer a comprehensive set of managed services that
expedite loT solution development (Botta et al. 2016). However, reliance
solely on the cloud can introduce latency and bandwidth issues for time-

sensitive applications and incur significant data transmission costs.
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e Fog Computing: Proposed as an intermediate layer between edge
devices and the cloud, Fog computing extends cloud capabilities closer to
the data source. It consists of geographically distributed fog nodes (e.g.,
routers, gateways, local servers) that can perform localized data
processing, analytics, storage, and control actions, thereby reducing
latency, conserving network bandwidth, and enhancing responsiveness

for critical applications (Bonomi et al. 2012; Chiang and Zhang, 2016).

e Edge Computing: Pushes computation, data storage, and application
services even closer to the data sources, often directly onto the loT
devices themselves or local gateways. Edge computing is crucial for
applications that require ultra-low latency, offline operation, and enhanced
data privacy by processing sensitive data locally (Shi et al., 2016;
Satyanarayanan, 2017). It also helps in reducing the volume of data

transmitted to higher layers.

The interplay between these paradigms often results in hierarchical
architectures (e.g., Edge-Fog-Cloud), where each tier handles tasks appropriate
to its capabilities and proximity to the data source or end-user (Stojmenovic and
Wen, 2014).

2.3 Large Language Model (LLM)

In recent years, Large Language Models (LLMs) have emerged as a
pivotal technology within artificial intelligence, demonstrating remarkable
capabilities in understanding, generating, and manipulating human language.
These models, typically based on deep learning architectures such as the
Transformer (Vaswani et al., 2017), are pre-trained on vast and diverse text
corpora, enabling them to acquire extensive world knowledge and sophisticated
linguistic patterns. Prominent examples, such as the GPT series (Brown et al.,
2020; OpenAl, 2023), LLaMA (Touvron et al., 2023), and Gemini (Google, 2023),
have demonstrated proficiency across a wide range of natural language
processing (NLP) tasks, often achieving or surpassing human-level performance
on various benchmarks.
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The core strength of LLMs lies in their ability to perform in-context learning,
where they can adapt to new tasks or generate specific types of output based on
a few examples or instructions provided in a prompt, without requiring task-
specific fine-tuning (Brown et al., 2020). This has opened new avenues for
creating more intuitive and powerful human-computer interfaces, as well as for

automating complex, knowledge-intensive processes.

Within the context of loT software systems architecture, LLMs are
beginning to play an increasingly significant role, particularly in areas that bridge
human interaction with complex system data and control. One notable application
is in Retrieval-Augmented Generation (RAG) systems (RAG) systems (Lewis et
al., 2020; Gao et al., 2023).

Next, in this dissertation, we will consider how LLMs, particularly within
RAG, can be leveraged to use structured knowledge about loT software system
architectures, quality requirements, and enabling technologies to provide

decision support in loT projects.

2.4 Retrieval Augmented Generation (RAG)

Imagine Large Language Models (LLMs) as incredibly smart and well-read
scholars. They have read a vast library of books (their training data) and can
discuss an enormous range of topics with impressive fluency. However, even the
most brilliant scholar has limitations. Their knowledge is based on the books they
have already read, so if new information comes out, or if you ask about a very
niche, specialized topic not well-covered in their library, they might struggle.
Sometimes, they might even try to "fill in the blanks" with information that sounds
plausible but is incorrect, much like a scholar trying to bluff their way through a

question. This is what the paper refers to as "hallucination."

Now, RAG is like giving that brilliant scholar a super-powered research

assistant and an always up-to-date, specialized library.
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Figure 2: Retrieval Augmented Generation Data Store and Query/Answer Process.

RAG is a technique where an LLM's ability to generate text is enhanced

by first looking up relevant information from an external source and using that

information to inform its output (Jiang et al., 2023).

2.4.1 The Role of Prompt Engineering in RAG Systems

Effective RAG systems rely heavily on prompt engineering, which is the

art and science of crafting effective prompts to guide the LLM's behavior and elicit

desired outputs (White et al.,, 2023). In a RAG context, the prompt typically

instructs the LLM on how to utilize the retrieved context to answer the user's

question. A well-designed prompt can significantly improve the quality, relevance,

and factuality of the generated response.

The key components of a RAG prompt are:

Instruction: Tells the LLM its task (e.g., "Answer the question based

only on the provided context.").

Context Placeholder: A designated section where the retrieved

documents or text snippets will be inserted.
Question Placeholder: Where the user's original query is placed.

Output Constraints (Optional): Instructions on the desired format,
length, or tone of the answer (e.g., "Provide a concise answer.", "If the

context does not contain the answer, say 'l do not know.’).
16



2.4.2 Leveraging Few-Shot Learning in RAG Prompts

Few-shot learning is a prompt engineering technique where a few
examples (shots) of desired input-output pairs are provided within the prompt
itself (Brown et al., 2020). This helps the LLM better understand the task, the
expected format, and the style of the desired response, especially for more

complex or nuanced queries.

In a RAG system, a few-shot example can demonstrate how the LLM

should synthesize an answer from the given context and a question.

By carefully engineering prompts, potentially incorporating few-shot
examples, and leveraging frameworks, developers can build more robust,
accurate, and contextually aware RAG systems that effectively harness the

power of LLMs while grounding them in factual information.

Table 1 - Few-shot RAG prompt example.

You are a helpful Al assistant. Use the following pieces of retrieved context to answer the
question. If you don't know the answer, simply say so. Don't try to make up an answer. Be

concise and answer based *only* on the provided context.

Context: The LangChain framework provides modules for building applications powered by

LLMs. Key components include Model I/O, Chains, and Agents.

Question: What are the key components of LangChain?

Answer: Key components of LangChain include Model I/O, Chains, and Agents.

Context: Prompt engineering is crucial for RAG. It involves crafting prompts to guide the LLM.
Question: Why is prompt engineering important for RAG?

Answer: Prompt engineering is important for RAG because it involves crafting prompts to guide

the LLM's behavior for better responses.

Context: {retrieved_context}
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Question: {user_question}

Answer: {output}

2.5 Final Considerations about the Chapter

This chapter has established the theoretical framework for this
dissertation. By examining the distinct yet interconnected concepts of loT
software systems architecture, the ISO/IEC 25010 quality model, and the
capabilities of large language models, we have constructed a comprehensive
framework for addressing the research problem. The discussion on loT
architectures highlighted the evolution from simple layered models to complex,
distributed paradigms, such as Edge, Fog, and Cloud computing. This
understanding is critical, as it defines the landscape of solutions that our

proposed system must be able to represent and reason about.

The exploration of quality requirements, grounded in the ISO/IEC 25010
standard, provided a structured vocabulary for defining the non-functional
"goodness" of a system. This framework is not merely theoretical; it serves as the
primary mechanism for classifying and evaluating the architectural solutions
within our knowledge base, enabling a more rigorous and standardized approach

to design trade-offs.

Finally, the introduction of Large Language Models and, more specifically,
the Retrieval-Augmented Generation (RAG) technique, provides the
technological mechanism to make this knowledge actionable. RAG offers a
powerful solution to the limitations of LLMs, such as knowledge cutoffs and
hallucinations, by grounding their generative capabilities in a curated, factual
knowledge base. The principles of prompt engineering and few-shot learning, as
discussed, will be instrumental in designing the interaction between the user, the

Al assistant, and the retrieved architectural data.

In essence, this chapter has laid out the "what" (the architectural
knowledge and quality attributes) and the "how" (the RAG-based Al). The

subsequent chapters of this dissertation will detail the practical implementation of
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these concepts in the development and evaluation of the "loT Architectural
Design Assistant," demonstrating how this theoretical foundation is translated into

a tangible research contribution.
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3 Literature Study

The present chapter aims to detail the methodology
employed in conducting the literature study, as well as to
present the quantitative results obtained, specifically the
number of selected articles that will constitute the

knowledge base for this research.

3.1 Introduction

The Internet of Things (loT) has emerged as a transformative
technological paradigm, interconnecting the physical and digital worlds through a
wide range of smart devices and communication networks. This proliferation of
connected "things" has driven innovation across various sectors, including smart
cities, precision agriculture, Industry 4.0, and personalized healthcare systems.
At the core of the effectiveness and viability of such systems lies their software
architecture — the fundamental structure that dictates how an loT system's

components interact, process data, and deliver value.

Designing software architecture for loT software systems presents unique
and multifaceted challenges (Gubbi et al., 2013; Al-Fugaha et al., 2015). These
systems are inherently complex, characterized by device heterogeneity, resource
constraints (including energy, processing, and memory), scalability requirements
for handling large volumes of data and devices, and the imperative need for
security and privacy in often distributed and vulnerable environments (Atzori et
al.,, 2010; Sethi & Sarangi, 2017). Additionally, the rapid evolution of loT
technologies and the diversity of application domains demand flexible and

adaptable architectural approaches.

In this context, a systematic and comprehensive review of scientific and
technical literature becomes fundamental. The primary objective of this chapter
is to investigate the state-of-the-art in designing software architectures for IoT
software systems. We will seek to identify the main proposed architectural

patterns, the methodological approaches used for their design and evaluation,
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prominent enabling technologies, and persistent challenges that still demand
attention from the research community and industry. Particularly, this review will
focus on architectures that prioritize quality requirements to compose a

knowledge base.

The critical analysis of existing works will not only facilitate the
consolidation of current knowledge but also identify gaps and opportunities for
future contributions, thereby paving the way for the proposal of a knowledge base
for designing resilient Internet of Things (loT) architectures. It is expected that
this review will provide a solid foundation for the development of the research
presented in this dissertation, contributing to the advancement of knowledge in

software engineering applied to Internet of Things software systems.

This research started with a Literature Search (LS) (Kuhrmann et al.,
2017). We aimed to find articles published since 2019, based on the work of
(Alreshidi and Ahmad, 2019). The search focused on technical literature
regarding architectural design solutions that influence Quality Requirements
(QRs) in loT software systems. The central research question guiding this study
is:

"What application domains and characteristics of their loT software

systems architectures influence Quality Requirements (QRs)?"

To answer the main research question, we divided it in 5 other research
questions (Table 2). Our first search used a PICO-inspired search on Scopus
(www.scopus.com) on December 22, 2022, and returned 130 articles. From
these, we selected six to begin a Snowballing process (one level backward and
forward) (Wohlin, 2014). This gave us an initial group of papers, and two were
highly relevant to our study's objectives. We then refined our search terms,
incorporating insights from related works (Alreshidi & Ahmad, 2019; Razzaq,
2020). This led to a broader search in Scopus in July 2023, which produced 38
articles. We added four of these to our initial set, resulting in a total of ten papers.
These ten papers were then used for another Snowballing trial (one level

backward and forward), totalizing a final set of 28.

Table 2: Research Questions.
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RQ1

What are the application domains of loT software systems?

RQ2

What are the proposed IoT software system architectures?

Research Questions

What are the characteristics of these loT software system

RQ2.1
architectures?
s What are the QRs identified in these loT software system
' architectures?
RQ2.3 How are these QRs worked out in these IoT software system

architectures?

To ensure the inclusion of the most recent publications and maintain the
currency of the knowledge base, the search date range was extended.
Consequently, the final search string (Table 3), but with the temporal constraint
updated to PUBYEAR > 2022 AND PUBYEAR <= 2024, was re-executed on the

Scopus database in December 2024. This updated search identified nine

additional relevant articles.

Table 3: Final search string performed in Scopus.

Search String (2024)

(software OR "Software Architect*") AND ("loT" OR "Internet of Things") AND
("Quality Requirement" OR "Non-Functional" OR "Architectural Requirements") AND
("Architecture” OR "Architectural Elements" OR component OR design OR model OR
framework) AND PUBYEAR > 2019 AND PUBYEAR <= 2024

These newly papers, along with the results from this latest search
execution, then underwent a further cycle of Snowballing (one level backward
and forward), followed by a comprehensive review of all extracted data. This final
iterative process culminated in the selection of a total of 37 papers for inclusion
in the knowledge base of this dissertation. The paper selection process involved

first applying defined inclusion and exclusion criteria (Table 4). Subsequently, two
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researchers thoroughly analyzed the chosen materials to address the research

questions. This selection was then reviewed and confirmed by a final researcher.

Table 4: Inclusion and exclusion criteria.

The paper must be in the context of IoT software systems.

The paper must report a primary study.

The paper must provide data to answer all the LS research questions.

Inclusion

The paper must be written in the English language.

The paper's publication date must be between 2020 and 2023 (later updated to
2024).

Duplicate publication/self-plagiarism.

Register of proceedings.

Exclusion

Papers that are not peer-reviewed.

The subsequent chart (Figure 3) illustrates the distribution of the selected
articles according to their year of publication.

Publish Year

18 17
16
14
12

10

4
4 3
2 . - v
0 [I—
2020 2021 2022 2023 2024
W Total 17 12 4 3 1

papers

Years

Figure 3: Paper distribution by publishing year.
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3.2 Related Works

This current study highlights that choices about how to design Internet of
Things (loT) software systems need to be guided by up-to-date findings. The
results from two important, related studies have a substantial impact on how this

research is conducted.

First, Alreshidi and Ahmad (2019) focused on the difficulties in designing
software for loT settings. They pointed out how hard it is to create systems that
can handle the wide variety, constant changes, and ability to grow that are typical
of loT systems. They also discussed the importance of incorporating security and
privacy into the design of these systems. To address these design issues, their
work proposed a basic model that utilizes cloud services and adheres to open

standards.

Later, Razzaq (2020) carefully reviewed existing writings on software
designs for 0T systems, focusing particularly on the use of microservice designs.
Razzaq (2020) emphasized that loT software systems must be capable of growth,
flexibility, and the management of various types of data. The review examined
older design patterns, such as n-tier and service-oriented designs, and
highlighted their limitations when applied to loT. After that, the study explored
how microservice designs could provide benefits, such as improved organization
into parts, flexibility, and the ability to integrate with other systems, to address the
design challenges of loT systems. The paper finishes by suggesting future

research topics for using microservice designs in loT.

In addition to these studies, it is also important to discuss loT reference
designs. This type of design provides a flexible plan for creating and testing
systems, which is especially useful for Industrial IoT. It is not tied to specific
technologies or rules, offering adaptable guidance on how networks, cloud
services, and matching hardware should be structured. Experts from various
fields typically recommend these designs to help transform industries using

current technologies (Mirani et al., 2022).
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To be more specific, reference designs show a basic layout for loT
software systems. They illustrate the main components, including hardware and
software pieces, and how they connect to ensure an loT-based software system
functions correctly (Alreshidi and Ahmad, 2019). Typically, reference designs are
created informally. However, using a planned design method is crucial to ensure
they are of high quality, last a long time, and can be maintained. Even so, many
reference designs do not become popular or last long after they are first released

or published in journals or at science events (Nakagawa and Antonio, 2023).

3.3 Results

Upon completing this research, we identified various domains within loT
software systems, along with their principal architectural designs. These were
characterized and linked to at least one Quality Requirement (QR) as defined by
(ISO/IEC-25010 2023), such as security, performance/efficiency, or flexibility. We
intended to generate a valuable Knowledge Base (presented in the next section),
that supported informed decision-making for architectural choices during the
creation of loT software systems, particularly when prioritizing QRs. This involved
classifying the identified l1oT application areas, QRs, and software architectures.
Subsequently, these architectural solutions were detailed, with an emphasis on
the specific QRs they addressed. To conclude, we compiled the architectural
elements relevant to each QR into distinct catalogs. Ultimately, the
comprehensive set of findings will serve as input for an Al-driven application,
designed to support informed decision-making throughout the design process of

loT software systems.
3.3.1 What are the application domains of IoT software systems?

The study found varied terminology for similar loT application domains in
primary sources. To address this, a new classification of these domains was
proposed, drawing on existing research. Additionally, 28 architectural solutions
were identified, some specific to certain domains and others "Generic" for broader

use.
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3.3.2 What are the proposed IoT software systems architectures?

The work identified a catalog of 37 proposed IoT software system solutions
for diverse applications, including healthcare, Industry 4.0, smart cities, and smart
farms. The catalog features a variety of architectural patterns, such as cloud-
based systems, event-driven loT, blockchain integration, geographic-based
designs, layered structures, and fault-tolerant edge-computing frameworks. This
diversity in design is intended to meet the specific challenges and quality
requirements of each domain, illustrating the complexity of loT software and the

critical demand for customized solutions.

3.3.3 What are the QRs identified in these loT software system

architectures?

The analysis of Quality Requirements (QRs) identified in the study
highlights their role as critical design challenges in loT software systems.
Performance/Efficiency emerges as the most dominant QR, followed by Security
and Flexibility. The prominence of security underscores the critical need for
robust protective measures in loT architecture—such as cryptography,
certificates, blockchain, and layered security, particularly as comprehensive

frameworks for managing and balancing multiple QRs are still emerging.

3.3.4 How are these QRs worked out in these IoT software system

architectures?

The architectural solutions investigated feature a diverse set of design
elements to meet various quality requirements. These architectures are
implemented using advanced technologies such as Kubernetes, Privacy-
Preserving Searchable Encryption (PPSE), the FogBus framework, blockchain,
Docker, and Software-Defined Networking (SDN). The use of these technologies
provides a flexible and robust foundation for the design and implementation of
loT software systems.
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3.3.5 What application domains and characteristics of their loT software

systems architectures influence Quality Requirements (QRs)?"

The primary outcome of the study is a comprehensive Knowledge Base
designed to support architectural decision-making for IoT systems. This
Knowledge Base catalogs 37 distinct architectural solutions, systematically
mapping their features to specific Quality Requirements (QRs). Ultimately, the
research highlights the critical importance of the design phase, demonstrating
that a thorough understanding of an application's domain, such as healthcare, is
essential for selecting an architecture that can successfully meet its unique

quality requirements.
3.3.6 Knowledge Base (KB)

The preceding chapter embarked on a systematic exploration of the
contemporary research landscape, meticulously reviewing and analyzing
literature contributions pertinent to the architectural design of Internet of Things
(IoT) software systems. That comprehensive Literature Review (Chapter 3)
served not only to map the existing terrain of knowledge but also to identify a core
set of impactful publications. These selected works provide a significant
understanding of architectural patterns, quality attribute considerations, and
enabling technologies within the [oT domain. From this rigorous selection
process, a curated knowledge base emerged as the main result, serving as a

foundational pillar for this research.

The primary objective here is to consolidate the collective insights
embedded within these papers into a coherent and actionable repository of
solutions knowledge. This endeavor moves beyond simple summarization,
aiming to organize and categorize the extracted data in a manner that highlights
shared characteristics, discerns trends, and makes complex architectural
concepts more accessible and applicable for designers and researchers. The
knowledge base constructed here is therefore a direct outcome of the systematic
literature review process. It comprises systematically extracted data points

covering several key facets of the selected articles. This includes the specific
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architectural patterns, frameworks, or models proposed or analyzed within each
study. Furthermore, the data captures the target loT application domains (Atzori
et al., 2010; Gubbi et al., 2013; Motta et al., 2019) (Figure 4), such as Smart
Farm, Smart City, Industry 4.0, and Healthcare, for which these architectural

solutions are intended.

loT Domains

Smart Farm Generic
14% 14%

Healthcare
Smart City 3204

35%

Industry 4.0
5%

B Generic M Healthcare M Industry4.0 MSmartCity M SmartFarm

Figure 4: Five loT Domains found in the Literature Review.

A crucial element of the extracted information pertains to the addressed Quality
Requirements (QRs) — the non-functional, such as scalability, security, and
reliability, often guided by frameworks like ISO/IEC 25010 (version 2023), that
each solution aims to satisfy (Figure 5). The knowledge base also documents the
enabling technologies and key design features highlighted as instrumental in
realizing the proposed architectures and achieving desired quality attributes.
Finally, to ensure traceability and facilitate further exploration, essential metadata
from the source publications, including paper titles, authors, publication years,

and access information such as DOls or links, has been systematically recorded.
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Quality Requirements
Functional Suitability, 8.1% Safety, 2.7%

Interaction Capability, 10.8%

Reliability, 24.3% Performance/Efficiency, 75.6%

Compatibility, 29.7%

Maintainability, 35.1%

Security, 59.5%

Flexibility, 43.2%

B Performance/Efficiency B Security M Flexibility B Maintainability B Compatibility B Reliability B Interaction Capability M Functional Suitability M Safety

Figure 5: How a solution addresses the Quality Requirement.

The subsequent sections of this chapter will present this extracted
information in a structured format. We will delve into a more detailed exposition
of the individual architectural solutions cataloged, presenting each with its

associated attributes as extracted from the source articles.

By consolidating and structuring this information, the ambition is to create
a valuable resource that not only underpins the subsequent research and
proposals within this dissertation but also serves as a reference point for
practitioners and academics navigating the complex decision-making processes
inherent in loT system architecture design. This knowledge base forms the
empirical bedrock upon which further analysis, pattern identification, and the

development of design support mechanisms will be built.

In Appendix A — Extraction Data from Literature Review (Knowledge Base) all
solutions extracted from the result (Knowledge base) of the literature review are

presented and described.

3.3.6.1 Knowledge Base Publication

The systematic literature review process described, along with the
resulting knowledge base, forms the basis of a study that has been peer-reviewed

and published. This work, which formally presents the mapping between loT
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application domains, architectural solutions, and their influence on quality

requirements, is detailed in:

e Silva, F., Souza, B., & Travassos, G. (2024). A Literature Study on
Application Domains and loT Software Systems Architectures
Solutions Influencing Quality Requirements. In: Anais do XXVII
Congresso Ibero-Americano em Engenharia de Software, (pp. 181-
195). Porto Alegre: SBC. doi:10.5753/cibse.2024.2844.

3.4 Final Considerations about the Chapter

This chapter provides a meticulous account of the methodological journey
undertaken to construct the empirical foundation of this research. Through a
rigorous and iterative process, combining a systematic search with the
Snowballing technique, we have navigated the vast body of literature to address
our central research questions. The application of strict inclusion and exclusion
criteria, followed by a multi-researcher review process, ensured the quality and
relevance of the selected works, culminating in a curated corpus of 37 seminal

papers.

The quantitative results presented herein, such as the distribution of
publications by year and the frequency of application domains and quality
requirements, provide a clear snapshot of the current state-of-the-art in loT
software architecture. More importantly, the systematic extraction and analysis of
data from these sources have led to the creation of the Knowledge Base, the

primary outcome of this literature study.

This structured repository of information, which catalogs architectural
solutions and maps them to specific application domains, quality requirements,
and enabling technologies, is not an end in itself. Rather, it is the foundational
asset that will drive the subsequent phases of this dissertation. The Knowledge
Base provides the verified, context-rich data necessary to develop and train the
Al-driven "loT Architectural Design Assistant." The following chapter will now shift

focus from knowledge acquisition to knowledge application, detailing the design
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and implementation of this assistant and how it leverages the insights

consolidated here.
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4 Tool Proposal

This chapter outlines the research proposal designed to
address challenges in the architecture of loT software
systems. The core of this proposal comprises two
interconnected components: the development of a
structured Knowledge Base of architectural solutions
derived from the literature review, and the creation of an Al-
driven IloT Design Assistant that interacts with and

leverages this knowledge for design support.

4.1 Introduction

Addressing the complexities inherent in designing effective Internet of
Things (loT) software systems requires robust, evidence-based support. Building
upon the theoretical foundations and literature review, this chapter outlines a
research proposal aimed at providing such support. We propose the creation of
a systematically compiled Knowledge Base of |oT architectural solutions (see
section 3.3.6) and, critically, the development of an Al-powered IoT Design
Assistant that utilizes this knowledge base to guide architects and researchers in

their design endeavors.

4.2 A Knowledge-Driven Decision Support Tool for loT

Architectural Design

The preceding sections have detailed the construction and composition of
a comprehensive knowledge base, systematically derived from an extensive
review of contemporary literature on Internet of Things (loT) software system
architectures. This curated repository encapsulates valuable insights into
architectural patterns, quality attribute considerations, and enabling technologies.
However, to fully leverage this wealth of information and translate it into practical

design guidance, a more interactive and assistive mechanism is beneficial.
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This section introduces the loT Architectural Design Assistant, a novel
decision support tool developed as a key contribution of this research. Built upon
the foundational knowledge base presented earlier, this tool is specifically
designed to aid software architects, engineers, and researchers in navigating the

complex decision-making processes inherent in loT architectural design.

The primary objective of the assistant is to provide a structured and
evidence-based approach to selecting appropriate architectural solutions and
technologies that align with specific project requirements and desired quality
attributes. By interacting with the tool, users can input their project context,
prioritize quality requirements, and explore potential architectural strategies
drawn directly from the curated knowledge. The following subsections will detail
the architecture of this decision support tool, its core functionalities, and the
underlying mechanisms that connect it to the knowledge base. This tool aims to
bridge the gap between theoretical architectural knowledge and its practical
application, empowering stakeholders to make more informed and effective

design choices for their loT software systems.
4.2.1 ArchloTect: lIoT Architectural Design Assistant

As an outcome and an instrumental component of the research presented
herein, a web application titled the "loT Architectural Design Assistant" was
developed. This application is engineered to function as an interactive interface,
enabling software architects, engineers, and researchers to effectively engage
with a curated knowledge base on Internet of Things (loT) system architectures.
The system's development was driven by the objective of systematically
translating knowledge derived from peer-reviewed literature and established
industry practices into actionable architectural guidance and a collaborative

resource.
4.2.2 Main Requirements

This module serves as the primary user interface for architects and
researchers to interact with and manage the loT architectural knowledge base.

The functional and non-functional requirements are presented.
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4.2.2.1 Functional Requirements

e FR-MRO1 - The application shall display the knowledge base content

in a hierarchical (tree-like) structure.

o FR-MRO01.1 - The application shall allow the user to select and
change the root node for the hierarchical presentation of the

knowledge base.

o FR-MRO01.2 - The application shall provide users with options to

filter the displayed knowledge base content.

o FR-MRO01.3 - The application shall provide filtering options,
including, at a minimum: Architecture (Pattern/Name), loT

Domain, Quality Requirement, and Technology.

e FR-MRO01.4 — The Filtering option shall permit “criteria”, where a

combination of options must be possible.

e FR-MRO02 - When a knowledge base item (e.g., an architectural
solution, a specific architecture, an loT domain, a quality requirement,
a technology) is selected, the application shall display a detailed
description and associated attributes for that item (source paper
details, description, target domain, addressed QRs, and technologies

used).

e FR-MRO03 - The application shall provide an administrative interface for

managing the knowledge base content.

o FR-MRO03.1 - Administrative users shall be able to perform
CRUD (Create, Read, Update, Delete) operations on all primary
entities within the knowledge base, including but not limited to:
Architectural Solutions, Architectural Patterns/Names, IoT
Domains, Quality Requirements, Technologies, and Paper
References.

e FR-MRO04 - The application shall implement role-based access control
to restrict knowledge base management functionalities to authorized

administrative users.
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4.2.2.2 Non-functional Requirements

e NFR-MRO1 - The IloT Architectural Design Assistant shall
communicate with the Al Assistant module via its defined APIs to

submit user queries and receive synthesized architectural guidance.
4.2.3 Technological Implementation

As shown in Figure 4, loT Architectural Design Assistant is implemented
utilizing a contemporary technology stack selected to ensure robustness,
maintainability, and a responsive user experience. The backend infrastructure
was developed using the Spring Boot framework, version 3.4.2, leveraging its
capabilities for building enterprise-grade applications within the Java ecosystem.
The core backend logic was implemented in Java (version 21), chosen for its

modern language features and long-term support.

The user interface (Ul), through which architects and researchers interact
with the system, was constructed using Vaadin (version 24) (Vaadin, 2024), a
Java-based web application framework. This selection facilitates a unified
development approach, allowing for Ul construction using Java, thereby aligning
frontend and backend development paradigms. Vaadin's component-centric
model supports the creation of rich, interactive interfaces necessary for
presenting, navigating, and potentially contributing to complex architectural

information.

For data persistence, the application employs an embedded H2 Database
Engine (H2 Database Engine, 2023). H2 offers a lightweight, SQL-compliant
relational database solution that manages the application's underlying knowledge

base, user interaction data, and potentially researcher contributions.

The entire application is containerized using Docker, ensuring
environmental consistency, simplifying deployment, and enhancing portability for
use by the intended audience of architects and researchers across diverse

platforms.
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Figure 6 - loT Architectural Design Assistant Architecture.
4.2.4 Al Assistant Module Architecture

Complementing the web-based "loT Architectural Design Assistant"
(described in Section 4.2.1), an Al-powered assistant module has been
developed to provide intelligent query processing and generative architectural
guidance. This Al assistant functions as a backend service, programmatically
accessible via Application Programming Interfaces (APls), and is designed to
interpret user queries related to loT software system architecture, retrieve
relevant information from the curated knowledge base, and synthesize coherent,

context-aware responses.
4.2.5 Main Requirements

This module provides intelligent query processing and generative
guidance, accessed via APIs by the IoT Architectural Design Assistant.
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4.2.5.1 Functional Requirements

FR-MRO01 - The Al module shall retrieve relevant documents from the

knowledge base based on a user query.

FR-MRO02 - The Al module shall synthesize a textual answer using the

retrieved documents and the user query.

4.2.5.2 Non-Functional Requirements

NFR-MRO01 - The Al Assistant shall expose a set of well-defined APls
(e.g., RESTful) for interaction with the loT Architectural Design

Assistant web application.

NFR-MRO02 - The Al module shall provide answers only based on

knowledge base data.

NFR-MRO03 - The Al module shall not, in any circumstance, search or

access external sources.

NFR-MRO03 - The “Temperature” parameter for the Al module shall be
setto 0.2.

NFR-MR04 - The Al module shall be configurable to utilize either a
locally hosted Large Language Model (LLM) or an online LLM service

with minimal code modifications.

4.2.6 Technological Implementation and RAG Architecture

As in Figure 7, the Al assistant is developed primarily in Python, version

3.12.9, leveraging its extensive ecosystem for machine learning and natural

language processing. The core of its functionality is built upon a Retrieval

Augmented Generation (RAG) architecture. This RAG approach enables the

assistant to ground its responses in the information contained within the

specialized loT architectural knowledge base, mitigating the risk of hallucination

and ensuring domain-specific relevance.

Inter-component communication between the primary "loT Architectural

Design Assistant" web application and this Al module is facilitated through a set
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of well-defined APIs. These APIs are implemented using the Flask micro-
framework (Pallets Projects, 2024), chosen for its lightweight nature and

suitability for developing RESTful services in Python.

The knowledge ingestion and retrieval pipeline utilizes LangChain
(LangChain Team, 2025), an open-source framework for developing applications
powered by large language models. LangChain is employed for several critical

tasks:

e Document Processing: It facilitates the loading and preprocessing of
textual data from the curated knowledge base (derived from the 37
selected articles as detailed in Chapter 3) and managed via the H2

database of the primary web application.

e Text Chunking: Sophisticated text splitting strategies within LangChain
are used to divide the knowledge base content into semantically coherent

chunks, optimized for effective embedding and retrieval.

¢ Embedding Generation: Numerical vector representations (embeddings)
of these text chunks are generated using an embedding. These

embeddings capture the semantic meaning of the text.

e Vector Storage and Retrieval: The generated embeddings, along with
their corresponding text chunks, are stored and indexed in a ChromaDB
vector database (ChromaDB Team. 2024). ChromaDB is utilized for its
efficiency in performing similarity searches, enabling the RAG system to
retrieve the most relevant chunks of information from the knowledge base

based on the semantic content of a user's query.

e Prompt Templates: LangChain's PromptTemplate class is essential for
dynamic prompt construction. It allows developers to define prompt
structures with placeholders for context, questions, and few-shot

examples, which are then formatted with the actual data at runtime.

Google’s Gemini Large Language Model (LLM) was chosen for this
implementation to orchestrate the generative component of the RAG architecture.

Upon receiving a user query (via the Flask API) and the relevant context retrieved
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from ChromaDB by LangChain, the Gemini model is prompted to synthesize a
comprehensive and contextual appropriate response, adhering to the structured

output formats and constraints defined for the IoT Architectural Design Assistant.

RAG (Retrieval-Augmented Generation) Al Assistant

) docker
— QElask 3
s - N -~
e q
$%
Chroma
I v
LangChain
Gorrini
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s
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\\\>

Figure 7 - Al Assistant Architecture.

4.2.6.1 Role in the Ecosystem and Interaction Flow

When a user (architect or researcher) poses a query through the "loT
Architectural Design Assistant" web interface, the query is routed to the Al

assistant's Flask API. The Al assistant then:

e Processes the query and uses LangChain to retrieve the most relevant

document chunks from the ChromaDB vector store.

e Constructs a detailed prompt, combining the user's query with the

retrieved contextual information.
e Sends this prompt to Google Gemini LLM for response generation.

e Receives the LLM's response and returns it to the web application for
presentation to the user.
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e This Al assistant, therefore, acts as the intelligent engine that transforms
the static knowledge base into a dynamic and interactive resource,
capable of providing nuanced and context-specific architectural guidance

for loT system design.

This Al assistant, therefore, acts as the intelligent engine that transforms
the static knowledge base into a dynamic and interactive resource, capable of
providing nuanced and context-specific architectural guidance for loT system

design.

4.3 User Interface Overview

loT Architecture Solution Knowledge Base

loT Design Deasion Assistant

Log in
Username «
Password »

L
Contact archiotect@cos.ufi.br if you're experiencing issues
0gging into your account

- ArchloTect -

Figure 8 - The Login page of the application.

Figure 8 displays the application's login page. This screen serves as the
primary entry point, requiring users to enter their registered username and
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password to access the system's functionalities. Upon successful authentication,

users are directed to the main home page.

loT Architecture Solution Knowledge Base o =

ArchloTect

)Home €3 Bok 38 Knowledge Base [ Al-Assistant (& About e o

Welcome to the loT Design Decision Assistant

Why Choose Our Tool?

Key Features:

Start exploring now and transform the way you design loT solutions!

Figure 9 - The Home page of the application.

The home page interface, as shown in Figure 6, is the initial screen
displayed to authenticated users. It integrates the primary navigation structure,
allowing access to all system modules. The menu system employs role-based
access control, dynamically rendering menu options based on the permissions
associated with the authenticated user's profile, thereby restricting access to
unauthorized functionalities (e.g., Knowledge Manager, User Manager, App
Config).
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Figure 10 - The Body of Knowledge of the KB.

The interface for presenting knowledge base statistics, depicted in Figure
10 and titled Body of Knowledge, aggregates and displays quantitative data about
the knowledge repository. This includes, but is not limited to, loT Domains and
QR code findings, total records, and classification breakdowns. These statistics
serve to characterize the knowledge base and support its management and

utilization.
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Figure 11 - The Knowledge Base Visualization Page.
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The 'Knowledge Base Visualization' interface, depicted in Figure 11,

facilitates an in-depth exploration of the underlying data. Users can navigate the

static representation of the knowledge, delve into the technical and reference

details of its hierarchical structure (Figure 12 and Figure 13), and apply filters to

focus on specific subsets of information. A key interactive feature enables users

to re-root the hierarchical display, allowing them to examine data relationships

from various starting points.

loT Archite lution Knowledge Base

oT Design Des tant

ArchloTect
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oftware Architecture for loT-based Indoor Positioning Systems for Ambient Assisted Living, 2023

Figure 12 - Showing details about the data node.
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Figure 13 - Showing reference details about the data node.

The 'Al Assistant' page, shown in Figure 14, enables users to engage with
the system's Al-powered capabilities. Through a chat-like interface, users can ask
questions about |loT architectures. The Al assistant then utilizes the underlying
knowledge base to understand the query, locate relevant documents, and

generate informative textual responses, providing intelligent decision support.

IoT Architecture Solution Knowledge Base ~
ArchloTect . use Gy
o o

P

o
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Three-Tier Edge-Fog-Cloud Architecture for Smart Farms
s E
e

Figure 14 — Al-based assistant.

The 'Knowledge Base Manager,' shown in Figure 15, is the administrative

interface for overseeing the system's knowledge repository. Authorized
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administrators can use this section to manage all aspects of the knowledge base
content, including adding new entries, modifying existing information, and
removing outdated or incorrect data across various categories like loT domains,

architectures, QRs, and paper references.

nnnnnnn

ArchloTect 7%

Grvome ook 3 knowle
Knowledge Manager

Figure 15 - Knowledge Base manager page.

4.4 Final Considerations about the Chapter

This chapter details the design and implementation of the proposed
research artifact, the "loT Architectural Design Assistant." We have transitioned
from the theoretical concepts presented in the preceding chapters to the tangible
construction of a dual-component system, designed to address the challenges of

loT architectural design.

The architecture presented is deliberately decoupled, comprising two
distinct yet interconnected modules. The primary web application, built with a
robust Java and Spring Boot Framework, serves as the user-facing portal for
knowledge exploration, visualization, and management. Its detailed functional
requirements ensure a structured and navigable interface to the curated

Knowledge Base.

Complementing this, the Al Assistant module, developed using Python's

rich data science ecosystem, functions as the intelligent engine. By implementing
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a sophisticated Retrieval-Augmented Generation (RAG) architecture, this module
transforms the static Knowledge Base into a dynamic resource, capable of
synthesizing information and providing context-aware answers to complex design
queries. The non-functional requirements for this module, particularly those
concerning data grounding and model temperature, were defined to ensure the

reliability and factuality of its responses.

In essence, this chapter outlines the complete technical blueprint of the
solution. It has defined the system's functionalities, its technological
underpinnings, and the interaction flow between its components. With the
system's architecture and functionality now clearly established, the subsequent
chapter will shift focus from implementation to validation, detailing the
methodological approach designed to evaluate the tool's effectiveness,

efficiency, and overall utility in supporting architectural decision-making.
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5 Evaluating the First Version of ArchloTect

This chapter presents a feasibility study of the ArchloTect
tool based on the Technology Acceptance Model (TAM) to
assess its perceived usefulness and ease of use. The
findings provide preliminary evidence of the tool's viability

and suggest a strong potential for positive user acceptance.

5.1 Introduction

Assessing the potential success of a new software tool requires a robust
theoretical foundation. As established in software engineering research,
experimental evaluation is crucial for validating new approaches. To this end, this
chapter employs the Technology Acceptance Model (TAM), originally proposed
by Davis (1989), to conduct a feasibility study on the ArchloTect tool. The TAM
provides a proven framework for this, focusing on two critical indicators of user
adoption: perceived usefulness and perceived ease of use. By applying this
model, this study aims to verify whether ArchloTect achieves its main objectives
and gather empirical evidence to support its feasibility and acceptance by

potential users.

5.2 Feasibility Plan

The criticality of architectural definition in software engineering is further
emphasized in the field of loT software systems, which are characterized by their
autonomy and complexity in terms of both hardware and interaction. The
ArchloTect tool was developed to help with this tough decision-making task.
Therefore, this chapter presents a feasibility study to evaluate the first version of
ArchloTect, based on the influential Technology Acceptance Model (TAM)
proposed by Davis (1989). The objective is to verify whether the tool is perceived
as useful and easy to use, thus providing evidence of its feasibility and potential

for acceptance by the development community.
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5.2.1 Planning

At this stage, the study design was prepared, encompassing all artifacts
for participants and researchers (Appendix A). This included a Consent Form, a
participant characterization form, and a detailed description of the study's

problem and its respective working scenarios.

The object of study is the ArchloTect tool, which aims to support
architectural decision-making in loT software system projects. The intention is to
evaluate and discuss the tool's feasibility. Therefore, it is hoped to answer the

following question:

“Is the ArchloTect tool a feasible solution for providing decision support to

software engineering professionals?”

Following the recommendation of Barcelos and Travassos (2006), who
emphasize the importance of experimental studies in academic environments as
an initial step to validate new technologies, this study was conducted with
students in the second semester of 2025 of a graduate program in Software
Engineering. This approach aims to reduce the risk of introducing immature

technologies into the industrial environment.
5.2.2 Execution

The ArchloTect tool evaluation was conducted with a group of 16
participants, all of whom were graduate students in software engineering and
professionals working in the IT field, with varying levels of experience and in
different roles. This group was carefully selected to ensure a representative
sample of potential users with varied technical knowledge, allowing for evaluation
of the tool from multiple perspectives. The study execution was structured in three
sequential and well-defined phases: preparation, task execution, and data

collection.

5.2.2.1 Phase 1: Preparation and Instruction of Participants

Initially, to ensure that all participants had a basic and homogeneous level

of knowledge about the tool's operation, a detailed explanatory video was made
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available. This video demonstrated the main features of ArchloTect, including
navigation through the knowledge base, use of the filter system, interaction with
the Al assistant, and visualization of architectural solution details. The objective
of this stage was to mitigate biases arising from the learning curve and allow
participants to focus on evaluating the tool's effectiveness, usability, and potential

for adoption, rather than on the initial exploration of its features.

5.2.2.2 Phase 2: Task Execution with Challenge Scenarios

After watching the video, participants were presented with three challenge
scenarios based on real problems in the loT domain. Each scenario described a
software system to be designed, with its respective main functional and non-
functional requirements. Each participant was instructed to choose one of the
three scenarios, the one with which they had the greatest affinity or interest, and
then use the ArchloTect tool to propose an architectural solution that met the

demands of the chosen challenge.

This stage represented the practical use of the tool. During this phase,
participants were able to freely explore ArchloTect's features, such as searching
the hierarchical knowledge base and consulting the Al assistant, to analyze,
compare, and select the architectures they considered most appropriate or
combine features from different solutions to build a proposal. The goal was to
simulate a real decision-making process, where the tool would serve as the main

technical support.

5.2.2.3 Phase 3: Post-Validation Data Collection

Upon completing the scenario resolution, each participant was directed to
fill in a post-validation questionnaire. This instrument, structured based on the
TAM model, was designed to collect quantitative data (through a Likert scale) and
qualitative data (through open-ended questions) to assess the tool's perceived
usefulness, perceived ease of use, and behavioral intention to use. In addition,
the questionnaire included a space for participants to provide feedback, criticism,

and suggestions for improvement.
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The process was designed to simulate a complete cycle of learning and
use, from introduction to the tool to its application to a practical problem, thereby
providing a rich and contextualized database for the feasibility analysis of
ArchloTect.

5.2.3 Characterization Results

All the participants signed the consent form and agreed to participate.
From the data collected through the characterization form, it was possible to
establish a general profile for each participant, the details of which are

consolidated in Figure 16.

Distribution of Professional Experience by Role

u Quantity mMin. Experience (Years) Max. Experience (Years)

Figure 16 - Years of Professional Experience by Role. This chart illustrates the
experience profile of the 16 study participants.

The professional experience of the 16 participants was diverse, covering
a wide range of software development roles and seniority levels. The largest
group consisted of Software Engineers (six participants), whose experience
ranged from O to seven years, with a median of two years. The Designers (two
participants) represented the most senior members, with experience ranging from
six to 20 years (median: 13). The Infrastructure group (two participants) had
experience between two and ten years (median: six years). The remaining roles
were represented by single participants, including a Developer (2 years), a

Requirements Analyst (2 years), a Team Leader (1 year), and several participants
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with no experience in roles such as Production Engineer, Programmer, and
Others.

In addition to their professional roles, the participants' prior knowledge of
loT software systems was also varied (Figure 17). The most common level of
experience, reported by half of the participants (eight out of 16), was a
foundational knowledge acquired through self-study, such as readings and
lectures. A significant portion of the group (four participants) reported having no
prior knowledge at all, while the remainder had more direct experience through

practical projects (three participants) or formal courses (one participant).

Knowledge of loT Software Systems

8

1

O = N W kR o0 ® N 00 W

Participants

m Knowledge from Readings/Lectures mNo Prior Knowledge

Practical Project Experience m Knowledge from Formal Courses

Figure 17: Participants' knowledge of loT software systems.

5.2.4 Quantitative analysis of user perceptions

A quantitative analysis of the ArchloTect tool was conducted to objectively
measure user perceptions following a practical evaluation task. Data was
collected from a diverse group of 16 IT professionals, all of whom were also
postgraduate students in software engineering. The questionnaire was
administered via Google Forms, whose linear scale format guided the use of a
10-point range. Consequently, a 10-point Likert scale was employed, where one
meant “Completely disagree” and ten meant “Completely agree”. Self-
assessment of software architecture experience was also measured on a scale
of one to ten, from “Totally unfamiliar’ to “I am an expert’.
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Table 5 presents a detailed breakdown of the quantitative data collected
from the user survey (N=16). For each of the four questionnaire items, the table
displays the raw response data, the frequency distribution of those responses,
and the resulting mode. Furthermore, it maps each item to its corresponding
Technology Acceptance Model (TAM) construct, providing a transparent

foundation for the analysis discussed in this section.

Table 5: Mapping Questions to TAM Constructs and Summary of Quantitative Results.

The ArchloTect tool interface is intuitive and easy to use.

TAM
Perceived Ease of Use (PEOU)
Construct
Data
710 |10 |7|(9| 7 |6 (7|85 |7[10| 9|7 (8|10
(N=16)
Frequency 5:1 6:1 7:6 8:2 9:2 10:4

| am satisfied with the overall quality of the recommendations provided

by the ArchloTect tool.
TAM
Perceived Usefulness (PU)
Construct
Data
9/9 1 8|9/8/9(10|7|8|8|8[10| 9|5 (8|7
(N=16)
Frequency 5:1 7:2 8:6 9:5 10:2

The ArchloTect tool met my expectations for assisting with architectural

decisions.

TAM

Perceived Usefulness (PU)
Construct
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Data
(N=16)

Frequency 5:1 6:1 71 8:7 9:3 10:3

The ArchloTect tool should be recommended to other professionals

working with loT software system architectures.

TAM
Behavioral Intention (Bl)
Construct
Data
9(10, 9 |7|/9|10(10|7|6|10|8|1010|10(9| 9
(N=16)
Frequency 6:1 7:2 8:1 9:5 10:7

The aggregate results, presented in Figure 18, reveal a consistently

positive reception of the tool across all measured constructs.

2 Quantitative Results (N=16)
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Figure 18: Quantitative Results (Mode, N=16).
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The perception of the tool's interface and ease of use obtained a mode of
7 (87,5% of participants marked at least 7). This result indicates that the most
frequent response from participants was one of moderate agreement that
ArchloTect is intuitive and easy to operate, a crucial factor for Perceived Ease of
Use (PEOU) in the TAM model. While this score is positive, it also suggests that
the user experience was not uniformly seamless for all participants, which

corroborates the feedback that pointed to specific challenges in the filter system.

Regarding satisfaction with the quality of recommendations, the tool
achieved a mode of 8 (93,8% of participants marked at least 7). This
demonstrates a consensus among participants, as agreement was the most
frequent response. This indicates that the content and architectural solutions
provided by ArchloTect are considered high-quality and reliable, a fundamental

pillar for the tool's viability, as they validate its main value proposition.

Similarly, the tool scored a mode of 8 (87,5% of participants marked at
least 7) on the metric of meeting expectations for assistance in architectural
decisions. This result is an indicator of Perceived Usefulness (PU), demonstrating
that the most common user experience was that ArchloTect successfully fulfilled
its promise of being an effective resource during the execution of a practical task.
Participants not only considered it theoretically useful but also confirmed its value

in a real-world scenario.

Finally, the metric with the most significant result was the likelihood of
recommendation, which achieved a mode of 10 (93,8% of participants marked at
least 7). This signifies that the single most frequent response was “Completely
agree”, a positive indicator of overall satisfaction and Behavioral Intention (Bl).
Such a definitive score suggests that participants would not only adopt the tool
for their use but also can act as its advocates, recommending it to other

professionals in the field.

In summary, the quantitative analysis paints a clear picture of a successful
evaluation. The ArchloTect tool is perceived by its target audience as useful and

high-quality, generating a strong intention to use and recommend it. The data
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provides a solid basis for affirming the tool's viability from the perspective of user

acceptance.
5.2.5 Qualitative Results

The qualitative data, collected from open-ended questions in the post-
validation questionnaire, provide crucial context for the quantitative scores.
Analysis of this feedback reveals several key themes relating to the strengths and
weaknesses of the tool and the ideal workflow, as perceived by the 16

participants.

5.2.5.1 A Complementary, Two-Tool System

The most significant conclusion from the qualitative analysis is that
participants do not perceive the Al Assistant and Hierarchical Knowledge Base
as competing features. Instead, there was a strong consensus in seeing them as
two parts of a single, more powerful and complete workflow. When asked to
choose the most effective mode, the group was almost evenly split, with six
participants favoring the Al Assistant, four favoring the Knowledge Base, and a
notable group of six explicitly stating that the ideal strategy involves using both in

combination (Figure 17).

This sentiment was best articulated by one participant who described the
ideal workflow as “starting with the assistant for initial guidance, then using the
Knowledge Base as supporting material.” This highlights a clear two-step
process: discovery followed by validation. Another user reinforced this by stating:
“Al served for initial research that was then further explored by navigating the

knowledge base to explore alternatives and validate the Al's presentation.”

Consequently, qualitative data indicate that users naturally assigned
distinct roles to each component based on their strengths. The Al Assistant was
valued as a tool for speed, discovery, and initial ideation, while the Knowledge
Base was established as the essential resource for validation, accuracy, deep

analysis, and trust.
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Analysis of Preferred Interaction Mode

Complementary /
Hybrid U:
4 3"5% ¢ Al Assistant

37%

Hierarchical
Knowledge Base
25%

m Al Assistant m Hierarchical Knowledge Base Complementary / Hybrid Use

Figure 19 - Analysis of Preferred Interaction Mode: Al vs.

Knowledge Base vs. Hybrid.

5.2.5.2 Key strengths outlined for each component

Participants' comments provided clear justification for the roles they

assigned to each module of the tool.
The Al assistant: valued for speed, simplicity, and synthesis.

Al was consistently praised for its efficiency and ease of use, especially
for users less familiar with the domain. It was described as “more pleasant and
easier to use” and capable of providing “clearer and more straightforward
solutions for someone with less experience in software architecture.” Its main
value lies in its ability to process complex queries and synthesize information. As
one participant noted, “with Al, the information came summarized and together,
So comparison became much easier and more efficient’, a task described as

“time-consuming” when done manually with filters.

The Hierarchical Knowledge Base: the source of trust, control, and

accuracy.

In contrast, the Knowledge Base was consistently positioned as the
definitive and reliable component. Its structured nature provided a sense of

control and confidence that Al lacked. One user stated clearly: “In the end, |
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tfrusted the tree-based knowledge base more.” This trust stems from its
traceability and the user’s ability to apply their own knowledge. For example, one
participant valued the fact that the knowledge base allowed them to use their
“tacit knowledge not present in the Al assistant.” In addition, it was praised for its
accuracy and depth, with users noting that they could “easily find an architecture
model that met all requirements” and that its descriptions explained how a system

could achieve a specific quality, not just that it could.

5.2.5.3 Weaknesses and opportunities for improvement

Qualitative feedback was key to identifying specific points that explain why
quantitative scores, although high, were not perfect. These weaknesses

represent clear opportunities for future development.

e Significant usability challenges in the filter system: This was by far
the most criticized aspect of the tool. Feedback pointed to several key

issues that detracted from the user experience:

o Lack of multiple selection: A major source of frustration was
the fact that “it is not possible to search for more than one

technology or requirement at a time.”

o Filter reset: Users found the workflow inefficient because
“‘when you redo a selection, the filter is completely cleared,

forcing the user to fill in all the fields again.”

e Panel to show details layout: The “Show details” panel was
described as poorly positioned, “covering part of the filter menu” which
forced a tedious cycle of hiding and showing the panel to adjust the

filters.

e Lack of Trust and Cohesion in the Al Assistant: While valued for

speed, the Al's credibility was undermined by several factors:

o Inconsistency with the Knowledge Base: The most

damaging issue was the Al providing answers that were
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"incoherent with the database" which, as one user stated, "made

me insecure about the Al assistant tool".

o Lack of traceability: Users reported “difficulty finding the
models suggested by the assistant in the hierarchical
knowledge base” disrupting the desired workflow of using Al for

discovery and the knowledge base for validation.

o Lack of refinement: It was also noted that the Al occasionally
“switched between Portuguese and English” further reducing its

perceived professionalism and reliability.

e User suggestions for future improvements: Participants provided
constructive suggestions, the most common being the need for closer
integration between the two main components, so that they “work more
cooperatively, rather than appearing to be two competing features.”
Other important suggestions included expanding the knowledge base,
adding a “feature to include new knowledge,” and creating a “summary

area of my choices” to help track the design process.

5.2.6 Evolving ArchloTect Based on User Feedback

The previous sections presented a comprehensive evaluation of the
ArchloTect tool by synthesizing quantitative data and qualitative feedback from
target users. The insights gathered from this analysis provided a clear and
actionable roadmap for refinement. This section details the subsequent evolution
of the tool, a development phase driven directly by the key findings of the user

evaluation.

Based on extensive user feedback, the tool's filter system underwent a
major evolution. The original design was criticized for lacking a multi-select option
and for an inefficient workflow where filters would reset after each selection. To
resolve these issues, the system was enhanced to allow for multiple,
simultaneous selections of technologies and requirements. Additionally, the filter

state is now preserved during use, creating a more intuitive and efficient
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experience by eliminating the need for users to repeatedly re-enter their criteria
(Figure 20).

Knowledge Base

1 industry 40 % Smart City % ~ All Architecture Solutions v [Co-npmlmmy» Flexibilty x - All Technologles v m ® Reset
smpatibility
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Move the cursor aver the tree node to see more details on the side panel

[ Cloud-Native Microservices |

> [ Compatibitity

> [ Flexibility Safety

Figure 20: Enhancements to the Filtering Feature.

To address user feedback regarding the Al Assistant's lack of trust and
traceability, key enhancements were implemented. Although all provided
suggestions are followed by references, the primary solution was to integrate
actionable "Filter Options" into the Al's answers (Figure 21). These pre-
configured filters enable users to instantly access the Al's architectural
suggestions within the main knowledge base, establishing a direct and reliable
link that was previously missing. Furthermore, all Al responses were standardized
to English to ensure professionalism and consistency, resolving the reported

issues of incoherence and improving the overall reliability of the assistant.
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Figure 21: Filter option for Knowledge Base use.

To improve the overall user experience and simplify onboarding, a new
guided tour feature was implemented (Figure 22). This tour provides users with
step-by-step guidance on navigating the tool, exploring its features, and
understanding its core functionalities through interactive tips and highlights. This
addition is designed to reduce initial confusion and help users become proficient

with ArchloTect more quickly.

loT Architecture Solution Knowledge Base
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Figure 22: An interactive guided tour.
Finally, in response to direct user feedback gathered during the qualitative
analysis, significant user experience enhancement was implemented.
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Participants noted that the plain text presented in the "Details Tab” was difficult
to read and lacked clear structure, as illustrated in Figure 22. To address this
specific point of friction, the component where users enter the description text
was upgraded to a rich text editor (Figure 23). This enhancement empowers
users to structure their content with essential formatting tools such as headings,
lists, and emphasis (bold, italics), significantly improving the clarity and
comprehensibility of the text. The tangible improvement in the user interface is

demonstrated in the before-and-after comparison in Figure 24.
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Figure 24: The Description in the Details Tab After the Rich Text Editor Upgrade.
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An essential component of any empirical investigation in software
engineering is a self-critical examination of factors that could compromise its
findings. This chapter is dedicated to a transparent discussion of the potential
threats to the validity of the ArchloTect feasibility study and its inherent limitations.
By acknowledging these factors, we do not diminish the study's outcomes; rather,
we frame them appropriately, allowing for a more nuanced interpretation and
providing a clear path for future research. The analysis is structured around four

primary categories of validity: construct, internal, external, and conclusion.

5.2.6.1 Threats to Construct Validity

Construct validity concerns the alignment between the study's

measurements and its underlying theoretical concepts.

Reliance on a Single Method: The assessment of user perception
depended entirely on a post-validation questionnaire. While the Technology
Acceptance Model (TAM) is a well-established framework, the lack of
complementary data collection techniques, such as direct user observation or in-
depth follow-up interviews, may restrict the full understanding of how users

genuinely interact with the tool.

Evaluation Apprehension: Given that the tool was developed within an
academic context, there is a possibility that participants, themselves
postgraduate students, might have felt inclined to provide socially desirable or
overly positive responses to support the researchers' work. This threat was
mitigated by ensuring participant anonymity and explicitly stating that critical and

honest feedback was vital for the tool's improvement.

5.2.6.2 Threats to Internal Validity

Internal validity addresses the confidence in the causal link between the
intervention (using the tool) and the observed outcomes, ensuring that

extraneous variables did not influence them.

Heterogeneity of Participant Experience: A significant threat emerges
from the diverse professional backgrounds of the 16 participants. Despite all

being IT professionals, their varying degrees of expertise in software architecture
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and loT could have heavily skewed their perceptions. An architect with decades
of experience might view the tool's guidance as rudimentary, while a less
experienced developer could find it highly insightful. Consequently, their ratings
of usefulness and ease of use may reflect their prior knowledge as much as the

tool's intrinsic qualities.

The Learning Effect: The study's design limited tool usage to a single
session, focusing on a single scenario. Although an introductory video was
provided to establish a baseline understanding, it is plausible that some reported
usability challenges stem from an incomplete learning curve rather than
fundamental design flaws. A single interaction may not be sufficient to achieve

full proficiency.

5.2.6.3 Threats to External Validity

External validity pertains to the extent to which the study's findings can be

generalized to different people, settings, or conditions.

Participant Representativeness: The primary challenge to generalizing
these findings is the specific profile of the participants. As postgraduate software
engineering students, they may be inherently more open to novel academic tools
and methodologies compared to industry practitioners at large, who are not
engaged in a research environment. As such, the high level of acceptance

observed may not be fully representative of the broader software industry.

Task Representativeness: The evaluation was based on three challenge
scenarios (Appendix F). While designed to be realistic, these tasks do not
encompass the full spectrum of complexity and scale found in real-world loT
projects. The tool's perceived effectiveness may vary significantly in projects of

much larger or smaller scope, or in different 0T application domains.

Tool Maturity: The findings of this evaluation are intrinsically bound to the
first version of ArchloTect. The results and conclusions reflect the specific feature
set and interface of this initial prototype. Subsequent versions with expanded
capabilities or a refined user interface could produce markedly different

evaluation outcomes.
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5.2.6.4 Threats to Conclusion Validity

Conclusion validity relates to the robustness of the statistical inferences

drawn from the collected data.

Limited Sample Size: The results of this analysis are inherently
constrained by the small sample size of 16 participants. While this number is
adequate for a feasibility study aimed at identifying qualitative themes and
quantitative trends, it is insufficient for making definitive statistical claims with a
high confidence level. Therefore, the results should be interpreted as indicators

of feasibility rather than as statistically conclusive proof.

5.3 Final Considerations about the Chapter

The evaluation of the first version of the ArchloTect tool, detailed in this
chapter, provides strong evidence supporting its viability. The study, conducted
with 16 postgraduate software engineering students and structured using the
Technology Acceptance Model (TAM), provided affirmative answers to the central

research question regarding the tool's effectiveness and feasibility.

The quantitative results showed a strong positive consensus, with the most
frequent response being an 8 for Perceived Usefulness and a 7 for Perceived
Ease of Use. This culminated in an exceptional finding for the likelihood of
recommendation, where the mode was 10, indicating "Complete Agreement" was

the most common answer.

These figures indicate that users consider the tool valuable, intuitive, and

worthy of adoption into their workflows.

The qualitative analysis revealed the ideal usage pattern: a
complementary system where the Al Assistant is used for rapid discovery and the
Hierarchical Knowledge Base is used for validation and in-depth analysis,

ensuring confidence.

However, the study also identified areas for improvement that are critical.

The primary weaknesses highlighted were the poor usability of the filter system

64



and the need to improve the traceability between the Al Assistant's responses

and the core knowledge base.

Despite the study's limitations, such as the sample size and participant
profile, the results support ArchloTect's value proposition. The next steps should
prioritize improving the usability of the filters and strengthening the integration
and reliability of the Al Assistant to consolidate the tool as an indispensable

resource for decision-making in IoT software architecture.
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6 Final Considerations and Future Perspectives

This chapter provides a comprehensive conclusion to the
research. The study is structured first to present its final
considerations and contributions. Next, it addresses the
research limitations to contextualize the findings and,

finally, describes the prospects for future work.

6.1 Final Considerations

This dissertation confronted the escalating complexity of designing
software architectures for Internet of Things software systems. Recognizing that
the reuse of proven solutions is crucial for effective engineering, this research
pursued a dual objective: first, to investigate the state-of-the-art in the field
systematically, and second, to embody that knowledge in a practical, intelligent

tool to support architectural decision-making.

The initial phase of this research, the systematic literature review,
culminated in a structured Knowledge Base that revealed significant trends in
current architectural practice. A prominent observation is the frequent adoption
of cloud-based processing to satisfy performance and energy efficiency criteria.
Similarly, the persistence of layered architectural patterns underscores their value
in managing complexity and ensuring maintainability. Most notably, Security
emerged as the dominant non-functional concern, with technologies such as
blockchain, cryptography, and Software-Defined Networking (SDN) being

commonly employed as mitigation strategies.

These findings, however, were not merely an academic exercise. They
formed the empirical foundation for the primary artifact of this research: the "loT
Architectural Design Assistant." The subsequent evaluation of this tool was
designed to assess its real-world utility in supporting architectural decision-

making.
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The subsequent evaluation of this tool was designed to assess its real-
world utility in supporting architectural decision-making. To this end, a feasibility
study was conducted with 16 postgraduate students of Software Engineering,
using the Technology Acceptance Model (TAM) as its theoretical framework. The
quantitative results demonstrated a highly successful reception, as presented in
Table 6. This positive sentiment was underscored by an exceptional mode of 10
for the likelihood of recommendation, indicating a strong intention for future
adoption.

Table 6: Summary table, combining the TAM constructs with the questions and their

calculated modes.

TAM Variable Questionnaire Item Percentage of at Mode
(Construct) least moderate

agreement (7)

Perceived The ArchloTect tool interface is 87,5% 7 -moderate
Ease of Use intuitive and easy to use. agreement (7).
(PEOU)
Perceived | am satisfied with the overall 93.8% 8 -agreement (8).
Usefulness quality of the
(PU) recommendations provided by
the ArchloTect tool.
Perceived The ArchloTect tool met my 87.5% 8- agreement (8).
Usefulness expectations for assisting with
(PU) architectural decisions.
Behavioral The ArchloTect tool should be 93,8% 10 - complete
Intention (BI) recommended to other agreement (10).

professionals working with loT

software system architectures.

Qualitatively, the study's most significant finding was the emergence of a
preferred hybrid workflow. Participants valued the Al Assistant for its speed and

ability to generate ideas and compose answers, but consistently turned to the
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Hierarchical Knowledge Base for its perceived reliability, traceability, and depth,
using it to validate the Al's suggestions. While the evaluation confirmed the tool's
core value, it also highlighted critical areas for enhancement, primarily the
usability of the filter system and the need to improve the Al's consistency to build
user trust. Ultimately, the evaluation provides robust evidence of the tool's
feasibility and its potential to become an indispensable resource for software
architects. Collectively, the insights from the Knowledge Base analysis and the
empirical results from the tool's evaluation affirm the value of a knowledge-driven,

Al-assisted approach to |oT architecture.

Collectively, the insights from the Knowledge Base analysis and the
empirical results from the tool's evaluation affirm the value of a knowledge-driven,
Al-assisted approach to IoT architecture. These combined outcomes form the
basis for the specific contributions detailed in the following section, offering a
robust solution that bridges the gap between theoretical knowledge and the

practical challenges faced by system designers.

6.2 Contributions

This research makes several distinct contributions to the field of software
engineering, specifically in the domain of Internet of Things (loT) software system

design.

First and foremost, this work presents a systematically curated and
structured knowledge base of loT architectural solutions. By conducting a
rigorous systematic literature review, we have addressed the significant
challenge of information fragmentation, where critical design knowledge is often
scattered across numerous academic papers and technical documents. This
consolidated repository provides a verified and centralized source of information
on architectural solutions, quality requirements, and enabling technologies, which

serves as a valuable resource.

Second, we deliver a tangible software artifact, the "loT Architectural
Design Assistant,” an interactive web application that makes this knowledge base

accessible and actionable. The tool's dual-modality interface is a key contribution,
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catering to different user workflows. It allows for both a structured, hierarchical
exploration of the knowledge base for users who prefer methodical discovery and
a dynamic, conversational query system for those seeking immediate, targeted

answers.

Finally, the integration of a generative Al module for intelligent guidance
represents a novel application of LLMs to the architectural design process. Unlike
simple search-and-retrieval systems, our Al assistant is capable of synthesizing
information from multiple sources within the knowledge base to provide coherent,
context-aware responses to complex design queries. This moves beyond mere

information access to offer a form of generative design support.

Collectively, these contributions form a bridge between theoretical
academic research and the practical challenges faced by software architects and
engineers, providing a robust tool to enhance decision-making and reduce the

complexity of designing modern loT software systems.

6.3 Research Limitations

To provide a transparent account of this work, several limitations that
frame the scope and applicability of our findings must be acknowledged. These

constraints also serve to identify clear pathways for future inquiry.

Initially, the knowledge base represents a snapshot in time, with its
underlying literature search having a cutoff date of late 2024. Given the dynamic
nature of the loT field, where standards and technologies evolve at a rapid pace,
the dataset of the tool may not capture the most recent innovations that emerged

beyond this timeframe.

Furthermore, the search methodology, while systematic, has inherent
constraints. The specificity of our search queries and the scope of the indexed
databases mean that some relevant literature may have been unintentionally
omitted. As a result, the dataset should be viewed as a representative, yet not
exhaustive, collection of architectural knowledge rather than a complete census
of all published work.
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Consequently, caution should be exercised when extrapolating the
findings. The architectural trends and solutions identified by the assistant are
valid within the scope of our dataset but may not be broadly generalizable to all
specialized loT sub-domains or emerging application areas that were not well-

represented in the selected literature.

Finally, the evaluation of the tool was conducted within a simulated
academic context, not in an operational industrial environment. Therefore, its "in-
the-wild" performance, including its scalability under enterprise-level loads, its
ease of integration with existing development pipelines, and its practical adoption
by engineering teams, remains an open question. Validating the assistant's real-

world efficacy is a critical next step.

These limitations do not diminish the study's contributions but rather define

its boundaries and highlight promising directions for subsequent research.

6.4 Future Perspectives

Future perspectives for the lifecycle and evolution of ArchloTect include:

e Continuous expansion and curation of the knowledge base,
through the systematic incorporation of new research, emerging
architectural patterns, and the investigation of a model for
community contributions, in order to ensure its ongoing relevance

and comprehensiveness.

e Enhancement of the User Interface and User Experience
(UI/UX), based on conducting new usability studies to optimize the

navigation and visualization of complex architectural information.

e Evolution of the Retrieval-Augmented Generation (RAG)
architecture, through investigating more advanced retrieval
strategies (e.g., hybrid or graph-based search) and refining the
model's capacity to synthesize complex and comparative

architectural analyses.
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Proposing and evaluating new Al functionalities, such as a
proactive design recommendation system and a mechanism for
real-time validation of architectural decisions, using the knowledge

base as a reference.

Investigating the applicability of the ArchloTect paradigm in
other phases of the software architecture lifecycle, such as
architectural evaluation, technical debt analysis, and system

evolution planning.

Finally, we posit that the foundational concepts of ArchloTect
can be extended beyond system design. Subsequent research
will explore the adaptation of this Al-assisted, knowledge-driven
approach to support other critical architectural activities, including

formal architectural evaluation and strategic system evolution.
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Appendix A — Extraction Data from Literature Review

(Knowledge Base)

KBRef-01

loT Domain Smart City

Architecture Layered Blockchain and Al-enabled

It is a multi-layered security approach. We combine blockchain and Al to provide strong data integrity and smart
threat detection. IoT device authentication protocols are used to verify the identity of devices, and data
encryption protects sensitive information. Privacy techniques, like anonymization and data minimization, are
used to comply with data protection rules. Also, real-time threat detection and response mechanisms are
included to proactively address security threats.

It proposes a seven-layer blockchain architecture designed for loT environments:

Physical Layer: Collecting data from the environment using sensors and devices.

Data Layer: Securely storing and managing data using a distributed ledger, Merkle trees, and asymmetric
encryption.

Network Layer: Facilitating communication between nodes through peer-to-peer networks.

Consensus Layer: Ensuring data integrity and agreement through various consensus mechanisms.

Incentive Layer: Rewarding nodes for validating blocks, encouraging network participation.

Smart Contract Layer: Automating tasks and interactions with smart contracts.

Application Layer: Enabling user interaction and application development through APIs and user interfaces.
To address the limitations of traditional Al and blockchain use in l0T, we propose a distributed architecture that
includes edge/fog/cloud computing. This framework has physical, communication, blockchain, and application
layers:

Data Processing: Data is collected from IoT devices, processed at gateways and fog devices, and then verified
and stored in the blockchain.

Al-Enhanced Cloud: Cloud-based Al algorithms analyze and process data, enabling intelligent decision-making.
Security and Privacy: Encrypted data storage and smart contract-based authentication ensure data security and
user privacy.

Hybrid Design: A hybrid approach, distributing tasks between IoT, cloud, and blockchain, optimizes
computational efficiency.

Smart Contracts for Authentication: Smart contracts facilitate user authentication, data format verification, and
reward point management.

Authentication Keys: Users are provided with authentication keys to access personalized data.

Secure Communication Channels: Secure communication channels are established based on system security
parameters.

In conclusion, combining blockchain, Al, and cloud computing is a good solution for developing secure, efficient,
and sustainable smart city loT applications. The proposed distributed architecture addresses the limitations of
these technologies, offering a scalable and robust framework for data-intensive environments. Future research
will focus on testing this architecture in real-world smart city deployments, exploring the optimization of
consensus mechanisms, and developing adaptive Al algorithms for dynamic loT environments. This paper
provides a basic framework for the next generation of smart city infrastructure, emphasizing security
(Confidentiality).

Quality Requirements

Confidentiality is archived using Blockchain is to enhance confidentiality by providing

Security immutable and auditable records of data transactions.

KBRef-02

loT Domain Healthcare

77



Architecture Layered

It is a multi-layered framework for monitoring and managing diabetes and abnormal blood pressure in patients.
The architecture integrates data from diverse sources, including wearable sensors, medical records, and social
media platforms, to provide a holistic view of patient health. This data is collected, stored on a scalable cloud-
based system utilizing technologies like Amazon S3, Hadoop, and HBase, and then analyzed using advanced
machine learning techniques, specifically Bi-LSTM and ontology-based approaches, to classify health risks and
predict potential complications. The resulting insights are presented to physicians to aid in treatment decisions
and deliver personalized healthcare recommendations to patients. The framework emphasizes leveraging big
data analytics to improve patient outcomes and proactively manage chronic conditions. While technologically
sophisticated, the practical implementation challenges (e.g., social media data privacy, real-world performance)
and quantifiable benefits require further investigation.

Quality Requirements

Utilizes Amazon S3 for data storage, which is inherently scalable (Flexibility) due to
Flexibility its distributed nature and ability to handle large volumes of data. S3's bucket system
allows for efficient organization and retrieval of patient data.

Cloud-based Infrastructure (Amazon S3), which offers robust security features
including access controls, data encryption, and compliance certifications (HIPAA
eligibility if configured properly). This provides a foundation for secure data storage
(Confidentiality and Integrity).

Security

A big data analytics engine is proposed for the analysis of real-world big data. It is
used to accurately handle healthcare data containing inconsistencies and that have
Performance/Efficiency | missing values, noise, different formats, a large size, and high dimensionality. In
addition, it is utilized to improve the quality of data processing and to save time
(Time Behaviour and Resource Utilization).

KBRef-03

loT Domain Healthcare

Architecture Fog Computing-Based Three-Tier
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It is a three-tier architecture for real-time health monitoring using fog computing.

loT Layer (Tier 1): Comprises sensors attached to the patient (monitoring body temperature, heart rate, pulse
rate) which transmit data via the patient's smartphone. This layer acts as the data source.

Fog Layer (Tier 2): Consists of fog nodes co-located with Base Stations (BSs). This intermediate layer sits close
to the end-users (loT devices) to perform initial data processing and analysis. It determines the patient's health
status and sends results back to the smartphone for immediate feedback. It also forwards results to the cloud.
This layer is crucial for achieving low latency.

Cloud Layer (Tier 3): The top layer, primarily providing large-scale, permanent storage via data centers. It
connects to the fog layer through a proxy server and stores the processed health status results for long-term
record-keeping and potential future retrieval.

The system utilizes an Application Model with three distinct modules:

Client Module: Resides on the patient's smartphone, providing the user interface and collecting sensor data.

Processing Module: Located on the fog nodes, responsible for analyzing the sensor data and generating health
status results.

Storage Module: Integrated into the cloud server for permanent storage of the processed results.

A key feature is the proposed Load Balancing Scheme (LBS) operating at the Fog Layer. It aims to minimize
overall system latency (communication and computing) by dynamically distributing the workload (loT device
connections and processing tasks) among different BSs/fog nodes, especially in areas with overlapping BS

coverage.

Quality Requirements

The Load Balancing Scheme (LBS) optimizes performance by managing both
Performance/Efficiency | communication and computing loads to minimize delays and network usage
(Resource Utilization).

The three-tier structure and the modular application design (Client, Processing,
Storage) promote separation of concerns. This modularity allows individual
components or layers to be modified or updated with potentially reduced impact on
the rest of the system.

KBRef-04

loT Domain Healthcare

Maintainability

Architecture Fog Based Efficient
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It is a multi-tiered architecture designed to address latency, network bandwidth, and security challenges inherent
in purely cloud-based loT healthcare systems. The core concept involves leveraging Fog Computing nodes
positioned closer to the data sources (IoT devices and Body Sensor Networks - BSNs) to perform initial data
processing, analysis, and management, thereby reducing reliance on distant cloud servers for time-sensitive
operations.

1.Tiers:

1.1.Edge Tier: Consists of loT devices and BSNs collecting patient data.

1.2.Fog Tier: Geographically distributed Fog Nodes acting as intermediaries. These nodes host Virtual Machines
(VMs) dedicated to specific tasks (BSN data processing, health record management, clinical document
processing, user identity management). They perform significant computation and short-term storage. A Proxy
Server may mediate between Fog and Cloud.

1.3.Cloud Tier: Centralized Cloud Server for long-term data storage and potentially more complex, less time-
sensitive analysis.

2. Key Pattern: Edge/Fog Computing pattern combined with Service/Module partitioning using Virtual Machines
within the Fog nodes.

3.Data Flow: Data flows from Edge devices -> Gateways -> Fog Nodes (for processing/analysis/short-term
storage/authentication) -> Proxy Server -> Cloud Server (for long-term storage). Users (Patients, Medical Staff)
interact primarily with the Fog Nodes to access/upload data and utilize system features.

Data flows from sensors/devices to the Fog Nodes for immediate processing and potential action, with less time-
sensitive data or aggregated results forwarded to the cloud. Users interact mainly through the Fog layer for
access and data management.

Quality Requirements

A primary goal is latency and network load (Bandwidth) reduction by processing data

R closer to the source (Fog) (Time Behaviour and Resource Utilization).

Achieved via authentication, role-based access, and processing sensitive data
locally on Fog nodes (Confidentiality).

KBRef-05

loT Domain Healthcare

Security

Architecture Cloud-Native Microservices

The proposed system employs a Microservices architecture that runs on Cloud platform. It decomposes the
application into small, independent services, each dedicated to a specific business capability and designed for
loose coupling. These services are deployed onto a major Cloud Platform (such as AWS, Azure, or GCP),
leveraging managed cloud services for infrastructure needs.

For deployment and runtime management, services are packaged as Docker containers and orchestrated using
Kubernetes, enabling automated scaling, deployment, and management. Communication between services and
clients utilizes both synchronous methods (like RESTful APIs or gRPC, exposed via an API Gateway) for direct
interactions, and asynchronous, event-driven communication via a Message Broker to enhance decoupling,
resilience, and handle background processing.

Data management follows a Polyglot Persistence strategy, where each microservice owns its data and selects
the most suitable database technology for its specific requirements. A central APl Gateway serves as the single
entry point for external clients, managing routing, security aspects like authentication/authorization, and rate
limiting. Finally, the architecture incorporates robust Observability through centralized logging, metrics collection,
and distributed tracing, and relies on fully automated CI/CD pipelines for streamlined and reliable deployments
of each microservice.

Quality Requirements
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Containerization with Docker abstracts the application and its dependencies from the
Flexibility underlying OS. Kubernetes provides a consistent orchestration layer across different
environments, reducing vendor lock-in at the orchestration level (Adaptability).

Use of standard protocols like HTTP/REST, gRPC, and AMQP/Kafka protocol for
Compatibility messaging ensures interoperability between services and potentially with external
systems. API Gateway provides a stable, documented external interface.

The microservices architecture inherently enforces modularity by breaking the
Maintainability system into small, focused services with well-defined APIs. Each service has its own
codebase and deployment pipeline.

KBRef-06

loT Domain Smart City

Architecture Unicorn ChargeUp

The Unicorn ChargeUp Architecture is a cloud-native, microservices-based system designed for the e-mobility
domain. It comprises two main user-facing applications (ChargeUp ESP for drivers and ChargeUp CPO for
operators) built upon a set of core microservices (Main, CPR, Reporting, Communication Log, Gateway,
Customer & Contract Management for CPO; Main, Portal for ESP). This application layer leverages the
foundational Unicorn Architecture (https://www.unicorn.com), which provides frameworks for GUI (uuHi), loT
integration (uuTi), application server logic (uuAppServer), and cloud deployment/management (uuCloud), along
with common infrastructure services (uuOidc, uuMessageBroker, uuAsyncJob, uuPaymentGateway). The
architecture emphasizes scalability, reliability, security, and interoperability through standardized protocols and a
modular design deployed on cloud infrastructure (initially Azure, designed for portability).

Quality Requirements

In summary, the Unicorn Cloud Framework (uuCloud) framework achieves high
availability for the Unicorn ChargeUp solution by orchestrating a runtime
environment built on isolation (containing failures), redundancy (NodeSets),
Reliability automatic failover (redirecting traffic from failed nodes), elastic scalability (handling
load and providing failover capacity), statelessness (enabling rapid recovery), and
automation (reducing errors). These elements work together synergistically to meet
the demanding 99.97% availability target.

In essence, the Unicorn Cloud Framework (uuCloud) framework provides the
orchestration, automation, and management layer that enables the Unicorn
ChargeUp architecture to leverage cloud-native principles (microservices,
containers, elasticity) effectively. This directly translates into achieving high
performance efficiency through robust scalability, optimized resource utilization,
responsive time-behaviour under load, and the ability to meet defined requirements.

Stateless Application Servers (uuAppServer): Enabling Horizontal Scaling

Performance/Efficiency

The uuAppServer instances are designed to be stateless regarding user sessions.
State is managed externally (e.g., JWT tokens, shared session store).

Flexibility Achieved:

Deployment Simplicity: Any server instance can handle any request, simplifying
Flexibility deployment and load balancing configurations. You don't need "sticky sessions."
Resilience: If one instance fails, requests can be seamlessly routed to another
healthy instance without losing user session data (assuming external state
management).

Scalability Link: This is the primary enabler for horizontal scalability (scaling out).
Because instances are interchangeable, you can easily add or remove them behind
a load balancer to match demand. This flexibility in adding/removing instances is
scalability.
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Unicorn Cloud Framework (uuCloud) framework provides strong, explicit security
foundations through its built-in components and patterns, particularly for:
Authentication (uuldM), Authorization (uuAA),and Input Validation (DTO Schemas).

1.Authentication (uuldM): Verifies who the user is. It uses the dedicated
uuldentityManagement component and JWTs (JSON Web Tokens). The framework
automatically validates these tokens on incoming requests to confirm user identity.

2 Authorization (uuAA): Determines what the user is allowed to do. It relies on
Profiles (grouping permissions) defined by developers. Authorization checks must be
explicitly implemented within the application's command/query logic, using
framework patterns to verify user permissions against their assigned profiles.

Security

3.Input Validation (DTO Schemas): Ensures data integrity and prevents malformed
input. The framework mandates Data Transfer Objects (DTOs) with defined schemas
for all inputs. It automatically validates incoming data against these schemas before
executing application logic, rejecting invalid requests.

All three are explicitly designed features of the uuCloud framework, providing
foundational security controls.

KBRef-07

loT Domain Generic

Architecture SDNWISE loT

The SDNWISE loT architecture is structured into two primary components: the Control Plane and the Data
Plane. Its main aim is to integrate Software Defined Networking (SDN) principles into the Internet of Things (IoT)
to improve management, security, and flexibility.

1. Data Plane (Infrastructure Layer): This layer handles the actual forwarding of data packets.

Sensor Nodes (loT Nodes): These are low-powered, 6LowPAN-based devices deployed in the environment.
They are easily compromised and can be exploited by attackers to generate malicious traffic for DDoS attacks.

Sensor OpenFlow Switch (SOFS): A customized OpenFlow-based switch that forwards loT traffic. It is less
intelligent, acting primarily as a forwarding device. However, in this architecture, it is programmed to:

Report traffic load to the controller.

Trigger alerts to the attack receiver component in the SDNWISE controller when the traffic load reaches a
predefined threshold.

Reset the threshold counter upon receiving a message from the attack receiver component (indicating the
reported traffic was not malicious).

2. Control Plane: This layer provides centralized control and management of the network.
SDNWISE Controller: This is the "brain" of the SDN-based loT network. Its core functions include:
Defining network policies.

Managing the control of the SDN-based IoT network.

Exposing APlIs that enable developers to create applications for the loT network.

loT Controller: Acts as a mediator or translator between the SDNWISE controller and the SD-loT network.

82



Receives traffic from the SDNWISE controller and converts it into a format understandable by the SD-loT
network.

Performs the reverse conversion (from SD-loT format to SDNWISE controller format).

Crucial for enabling heterogeneous network support in the future (connecting multiple types of loT networks to
SDNWISE).

Attack Detection and Mitigation:

Counter-based DDoS Attack Detection (C-DAD) Application:

Monitors and analyzes loT traffic based on counter values to detect DDoS attacks, anomalies, and threats.
Comprises different algorithms that leverage counter variables for detection.

Attack Mitigation Module:

Receives reports of malicious traffic from the C-DAD module.

Performs countermeasure actions on the identified malicious flows.

Sub-modules coordinate to mitigate attacks using SDN security features.

Malicious Flow Entry: Adds entries for malicious flows in the network to block them.

Malicious Node Removal: Uses the SDNWISE controller (via network graphic APls) to remove malicious nodes
(those generating the malicious traffic) from the SD-loT network.

In summary: The SDNWISE architecture strives to leverage SDN principles to create a more manageable,
secure, and flexible 0T network. Key aspects include the separation of control and data planes, centralized
control via the SDNWISE controller, specialized IoT controllers for translation, and dedicated modules for DDoS
attack detection and mitigation.

Quality Requirements

This module specifically targets DDoS attacks, a common threat to 10T networks. It
Security monitors traffic patterns and uses counter-based algorithms to detect anomalous
behavior that could indicate an attack.

KBRef-08

loT Domain Smart City

Architecture Blockchain-Based Zero Trust on the Edge

The proposed "Blockchain-based Zero Trust on the Edge" architecture is conceived as a distributed system
meticulously designed to enforce fine-grained, continuously verified access control for Internet of Things (loT)
devices and users within environments like smart cities. It uniquely leverages blockchain technology to provide
an immutable ledger for logging requests and verifying trust. The system is structured around three primary
groups of components: Zero Trust Architecture (ZTA) components, blockchain components, and the loT/user
components interacting with the system. Adopting a hybrid architectural style, it blends Microservices,
Component-Based design, and specific ZTA patterns with Blockchain integration, with the implementation
explicitly following a "microservice manner".

At its core are the ZTA components responsible for policy enforcement and validation. The Policy Enforcement
Point (PEP) acts as the crucial gateway, receiving incoming requests from client-side components — an Angular-
based Analyser for administrators and a Python-based Client for users and devices. The PEP forwards these
requests to the Policy Administrator (PA) for validation and, upon approval, interacts with the relevant
Persistence Managers (PMs) to grant access to resources. The PA orchestrates the complex validation process
by sending requests to multiple Policy Engines (PEs). It utilizes a consensus algorithm (specifically, a majority
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vote) based on the responses from the PEs to determine the final decision. The PA also generates the
necessary access tokens for PMs and triggers the immutable logging of requests and decisions onto the
blockchain, adeptly handling both synchronous and asynchronous request flows differently. Multiple instances of
the PE execute the core Trust Algorithm (TA), which performs multifaceted security checks based on identity
(provided by the AS), the operational environment (using data from OSV), request parameters (validated by PC),
and historical behavior patterns (queried from the BC-P-MON).

Supporting this core validation logic are several specialized components: the Authentication Service (AS)
supplies vital information on known users/actors, including IDs, access rights, and network addresses (read-only
for the TA); the Operating System Vulnerability (OSV) component provides data on known OS vulnerabilities for
environmental risk assessment; the Parameter Checker (PC) validates the syntactic and semantic correctness
of incoming request parameters; and the Blockchain Peer Monitoring (BC-P-MON) component, operating with a
blockchain peer's identity, enables the TA to query the historical request data stored immutably on the
blockchain for behavioral analysis.

Data and resource management are handled by dedicated Persistence Managers (PMs), each responsible for a
specific resource type, such as the AUTH-PM managing authentication data via the AS-DB. Access to these
PMs is strictly controlled through valid access tokens issued by the PA. Complementing the PMs is the
Blockchain Peer Logging (BC-P-LOG) component, which also uses a blockchain peer identity, tasked by the PA
with logging the details of incoming requests and their final validation outcomes onto the blockchain ledger,
ensuring immutability.

The blockchain infrastructure itself is implemented as a permissioned blockchain using Hyperledger Fabric
(HLF). In the described Proof-of-Concept (PoC), this setup includes a single organization, a single orderer node,
three peers (though only one actively submits transactions in the PoC), a single channel, and one chaincode
designed for storing and retrieving actor request history. The fundamental role of the blockchain is to provide a
secure, tamper-proof, distributed ledger for this request history, which is critical for the TA's behavioral analysis
and for logging access decisions for auditability and trust verification.

Interacting with the system are the end-users, 10T devices, and administrative entities (like a public service),
connecting via the aforementioned Client and Analyser components. Communication within the architecture
predominantly uses synchronous REST APIs for interactions between the various ZTA microservices. For
specific asynchronous communication needs, such as notifications from the PA to the PEP, Redis is employed
as a message broker.

Finally, the deployment strategy involves packaging all system components (except end-user tools) as Docker
containers, orchestrated using Docker Compose. The core ZTA components are implemented as Java/Spring
Boot applications, while the client-facing components utilize Angular and Python.

Quality Requirements

The core focus. Achieved via: ZTA principles (least privilege, continuous verification),
multi-factor checks (identity, environment, usage, behavior), blockchain for
immutable request history/logging (integrity, non-repudiation, accountability support),
cryptographic identity verification (authenticity).

Security

Redis as a message broker supports Pub/Sub and queuing patterns for real-time
(Time Behaviour) communication between systems. It provides efficient message
Performance/Efficiency | delivery with low-latency, leveraging its in-memory data store. Redis Streams also
enable event-driven architectures through time-ordered logs for asynchronous
message processing.

The system is explicitly broken down into fine-grained microservices with distinct
Maintainability responsibilities (Modularity), facilitating independent development, deployment, and
maintenance.
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Scalability is explicitly discussed and evaluated, particularly concerning the impact of
adding more Policy Engines (PEs). Potential for scaling PEs is noted, but
performance impacts are measured.

Flexibility
Use of Docker containers for all components (except end-user tools) simplifies
deployment and adaptation across different host environments supporting Docker
(Installability and Adaptability).

KBRef-09

loT Domain Healthcare

Architecture Adaptive Fog-Cloud IoHT (Internet of Health Things)

It is a heterogeneous cloud-assisted communication framework specifically designed for Internet of Health
Things (IoHT) applications. The architecture is structured into four distinct layers to efficiently manage diverse
healthcare data types and processing requirements:

Data Collection Layer: This foundational layer interfaces with various healthcare devices (sensors, medical
instruments, etc.) to gather both real-time (or near real-time) data (e.g., vital signs) and non-real-time big data
(e.g., Electronic Health Records (eHR), medical images like MRI). Based on the data's characteristics and
processing needs, it forwards the data upwards to either the Fog or Cloud layer.

Fog Layer: Positioned closer to the data sources, this layer is crucial for handling time-critical data. It performs
initial processing tasks like filtering, aggregation, compression, rule-based preprocessing, and intermediate
analytics. This reduces latency for urgent actions (e.g., detecting high blood pressure fluctuations needing
immediate attention) and lessens the load on the cloud, improving overall QoS and bandwidth utilization. It also
provides local storage.

Cloud Layer: This layer serves as the central hub for heavy computation and long-term storage. It receives
preprocessed data from the Fog layer and also directly ingests large-volume, non-time-critical data (like eHR or
high-resolution MRI images) from the Data Collection layer. The Cloud performs advanced analytics using data
mining, machine learning, and complex algorithms on the aggregated heterogeneous data to extract deep
insights.

Application Layer: The topmost layer provides user interfaces for various stakeholders (patients, doctors,
researchers) to access the processed information, alerts, and healthcare applications derived from the
underlying layers.

To manage data flow, resource allocation, and load balancing effectively across these layers, particularly for
optimizing QoS, the framework utilizes Software Defined Networking (SDN). SDN decouples the control plane
from the data plane, enabling centralized/distributed control over routing, scheduling, and resource allocation
through network virtualization, adapting dynamically to different application needs.

Quality Requirements

The architecture explicitly aims to improve performance. Low latency for real-time
data is achieved via the Fog layer. High throughput for big data analytics is handled
Performance/Efficiency | by the Cloud. Dynamic allocation of the resources with SDN is used for efficient
resource allocation and load balancing to optimize these metrics (latency,
throughput, response time, bandwidth usage, E2E delay) (Resource Allocation).

KBRef-10

loT Domain Smart Farm
Architecture LoRaWAN-enabled
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The system architecture is designed as a low-cost, long-range wireless switching system specifically for
intelligent agricultural applications, with a primary focus on automating irrigation to reduce labor and improve
water consumption.

The core components of the architecture are:

End Devices (loT Devices): These are the LoRaWAN Power Switch units. They consist of a board with:
LoRaWAN modules (specifically Radioenge LoRaWAN and LoRa ESP32 modules are tested).

Relays to control power to external devices (e.g., solenoid valves for irrigation, up to 220V).

Power supplies (5V for the board, 12V/24V for actuators like solenoid valves, using a hi-link mini-transformer
and a step-down transformer). Status LEDs. Manual override switches.

LoRaWAN Gateway (GW): This device receives transmissions from the End Devices via LoRaWAN.
Network Server: The gateway forwards data to a Network Server (The Things Network platform is mentioned).

Application Server/Web System: The Network Server forwards messages to the correct application. In this case,
it's a web system (developed with Python/Django) hosted on a UFPI server. This web system includes:

An MQTT Broker for communication with the loT Hub (which seems to be part of the LoRaWAN network
infrastructure, likely the gateway or network server).

A front-end for the farmer to remotely control the irrigation valves via a cell phone or computer.

The communication flow is: Farmer interacts with Web System -> Web System sends command via MQTT ->
LoRaWAN Network Server -> LoRaWAN Gateway -> LoRaWAN End Device (Power Switch) -> Actuator
(Solenoid Valve). Data from End Devices (e.g., status) would flow in the reverse direction.

Quality Requirements

It is achieved by the inherent low-power (Resource utilization) nature of LoRaWAN

TR 2 = U technology used in the end devices.

Use of MQTT allows the web application to communicate with the LoRaWAN
backend and other subsystems (Interoperability).

KBRef-11

loT Domain Smart Farm

Compatibility

Architecture Microservices
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The proposed architecture is built using AWS serverless services. It aims to remotely monitor livestock, providing
insights into their health and environment. The architecture is divided into several key frames, each leveraging
specific AWS services:

AWS IoT Core: Manages and secures loT devices, handling device connection, communication (MQTT),
shadowing, authentication, and remote management.

Lambda: Serves as a versatile compute service, converting video frames, storing them in S3, transmitting them
to Rekognition, and updating DynamoDB metadata.

Data Recognition: Uses AWS Rekognition to analyze video frames, identifying animals, people, and objects,
detecting abnormal behavior, and sending alerts via Amazon Pinpoint.

Streaming Data: Employs Kinesis Data Streams for real-time data ingestion from loT devices. Kinesis Data
Firehose scales, groups, compresses, transforms, and encrypts data before storing it in S3.

Data Stores: Uses purpose-built databases like DynamoDB and Redshift to store events, deliver microservices,
and generate operational dashboards accessible through AWS AppSync.

Data Processing: Utilizes AWS Glue for ETL (Extract, Transform, Load) processes, preparing data for analysis.
Data Lake: Leverages Amazon S3 for storing both raw and processed data, enabling decoupled compute and
storage using Amazon EMR for scalable data processing.

Logging: Uses Amazon CloudWatch for collecting metrics, logs, and audits, setting alarms, and triggering scaling
operations.

Machine Learning: Employs Amazon SageMaker for building, training, and deploying machine learning models.
It uses boosted decision trees for health prediction and linear regression for milk production forecasting. Edge
models on AWS loT Greengrass optimize battery power consumption.

Analytics: Uses Amazon Athena for querying data stored in S3 and Amazon QuickSight for creating scalable,
ML-powered business intelligence dashboards.

Presentation: Uses Amazon Route 53, Elastic Beanstalk, and Elastic Load Balancer to provide a scalable and
accessible web application.

User Identities: Secures access to the system using Amazon Cognito User and Identity Pools, providing features
like MFA, compromised credential checks, and account takeover protection.

The system comprises three types of participants: Livestock IoT Devices (collecting sensor data), Cameras
(monitoring animals), and loT Edge (acting as a mediator with AWS loT Greengrass core).

Data ingestion is critical, using Kinesis Data Streams and Firehose to handle high throughput and payload sizes
up to 24KB per request.

Overall, the architecture is designed to be scalable, resilient, and cost-effective by using AWS serverless
services.

Quality Requirements

The use of AWS serverless services (Lambda, Kinesis, S3, DynamoDB, etc.)
inherently provides scalability (Flexibility). These services automatically scale up or
Flexibility down based on demand, ensuring the system can handle fluctuating workloads and
increasing data volumes. Elastic Load Balancer distributes traffic across multiple
EC2 instances.

The use of Amazon CloudWatch for logging, monitoring, and auditing directly
Maintainability supports analyzability. These tools provide insights into system behavior, making it

easier to diagnose problems and assess the impact of changes.
KBRef-12
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loT Domain Smart Farm

Architecture Agricultural loT Reference Architecture (AITRA)

The Agricultural 10T Reference Architecture (AITRA) is proposed as a standardized, comprehensive framework
designed to guide the development of diverse smart agriculture solutions. Its primary goal is to offer templates
and reusable components that streamline the creation of customized applications tailored to specific agricultural
fields, while ensuring interoperability between these solutions and external systems.

AITRA presents its structure through two main views:

Layered System Architecture: A conceptual model emphasizing modularity and separation of concerns. It
includes layers for Devices, Transport, Services (e.g., intelligence, visualization), Information & Data
Management, and Applications. Users can interact via a rich GUI layer, either connecting directly to devices via
Transport services or leveraging pre-built Application and Service layer modules. Crucially, all layers can utilize
the Information & Data Management layer's services.

Three-Tier System Architecture: An implementation-focused model dividing the system into distributed hardware
tiers:

Device Tier: Comprises IoT Devices (direct cloud connectivity) and Gateways (connecting local, potentially non-
IP devices like sensors, actuators, drones, robots, embedded systems). Gateways can function as Edge
Gateways, performing local processing (filtering, aggregation, analytics, control) to improve real-time response
and reduce bandwidth usage. Key gateway components include Data Transport, Synchronization,
Filtering/Aggregation, Device Management, Offload Analytics/Controls, and an Application (App) layer for
abstraction and control.

Cloud Tier: Hosts the core platform logic, structured loosely rather than strictly layered. It includes Transport,
Service, Information/Data Management, and Application layers, facilitating communication and providing core
functionalities, data handling, and intelligence.

Business Tier: Represents the end-users (developers, companies, governments, individuals) and their
applications, interacting with the Cloud Tier primarily through its GUI layer and development tools (like the
design wizard shown in the example).

Communication between tiers relies heavily on messaging protocols (specifically a publish/subscribe model with
a defined topic tree structure like AgriloTFM, EconAndFIData, FieldAccount) and web browser-server
interactions. Standardized frame formats are defined for configuration, data transmission, commands, and
events/notifications to ensure consistent data exchange.

A key feature highlighted is the user-friendly development process, exemplified by a scenario where a user
builds a farm management solution using drag-and-drop GUI components and pre-built modules for planning,
monitoring, and control, drastically reducing development time and complexity. AITRA aims to be vendor-neutral,
secure, reliable, and scalable, supporting standardized descriptions of local network topologies and providing
dedicated telemetry, management, and manipulation capabilities.

Quality Requirements

Publish/Subscribe to standard messaging pattern. Focuses on interoperability
Compatibility through standardization, enabling communication and data exchange between
diverse internal and external components/systems.
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Imagine AITRA as a secure community for smart farming devices and applications.

Getting Past the Gate (Authentication): Before a new device (like a sensor gateway)
can even join this community and start talking, it needs to prove it belongs there.
AITRA uses something called "code protection." Think of this like a secret
handshake or a unique ID card the device shows at the gate during setup. This
makes sure only genuine, authorized devices get registered, preventing random or
malicious devices from joining.

Talking Securely (Secure Communication): Once inside, when a device sends its
valuable data (like soil moisture readings) up to the cloud, or when the cloud sends
commands back (like "start irrigation"), AITRA wants this conversation to be private.
The text says devices "securely send its data." This means the messages are likely
sent through a protected tunnel (using encryption, like HTTPS for websites or TLS
for messaging). This stops others from easily listening in on the conversation or

. tampering with the messages as they travel across the internet.

Security

Knowing Who Can Do What (Authorization & Access Control): Inside the community,
not everyone needs to know everything or be able to control everything. AITRA
organizes information into specific channels or "topics" (like different mailboxes). An
application interested only in temperature data will subscribe only to the temperature
mailbox for a specific field. It won't see the irrigation commands unless it's allowed
to. Likewise, when an application tries to send a command (like telling a specific
tractor to move), the system needs to check: "Is this application allowed to give
orders to that tractor?" This ensures only authorized applications can access specific
data or control specific devices.

So, in simple terms, AITRA checks who you are before letting you in (authentication),
protects your conversations (secure communication), and controls what information
you can see and what actions you're allowed to take (authorization and access
control). It combines these steps to provide overall "security support" for the smart
farm.

Achieved through clear separation of concerns via layered and tiered structures
Maintainability (Modularity), distinct functional modules within tiers (e.g., Filtering, Management,
Analytics), promoting easier updates, replacements, and understanding.

KBRef-13

loT Domain Smart Farm
Architecture Layered
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This text describes a multi-layered system designed for an agro-weather station, focusing on data collection,
transmission, presentation, management, and orchestration. Here's a summary:

1. Perception Layer (Data Collection):

Uses interconnected sensors to collect environmental data (temperature, humidity, pressure, solar radiation).
Nodes operate in hybrid mode, collecting data locally or transmitting wirelessly.

Employs an Al-based LSTM model for weather forecasting.

Nodes feature hybrid power (solar/AC) and energy-efficient firmware with adaptive communication.

Utilizes change point detection to adjust measurement frequency.

Includes agents for performance monitoring and alerts.

Nodes are designed for portability, scalability, and interoperability.

2. Transmission Layer (Data Transfer):

Ensures reliable communication between system elements.

Transports data from perception to presentation layers wirelessly or locally.

Supports various wireless standards (WIFI, NRF24L01, Bluetooth) and is open-source for future technologies
(2G/3G/4G, Lora, LPWAN, Zigbee, Sigfox).

Offers connection-oriented and connection-less transmission modes.

Supports wired communication as well.

3. Presentation Layer (Data Visualization):

Presents formatted data through a user-friendly GUI compatible with various devices.
Supports the creation and enhancement of the Al-based weather forecasting model.
Prioritizes data visibility, accessibility, ease of use, system attractiveness, and system alerts.
Uses lightweight protocols (HTTP, MQTT) for energy efficiency.

4. Management Layer (System Control):

Provides real-time centralized monitoring of the base station and network elements.

Collects critical parameters (processor load, RAM usage, traffic, network performance, station health).
Allows remote configuration and monitoring of alert thresholds.

Accessible through a VPN tunnel or local network.

5. Middleware Layer (System Orchestration):

Acts as an orchestrator, creating interfaces between different layers.

Facilitates fast deployment of perception layer elements.

Includes a database for parameter management, cloud computing for data and model training, and a decision-
making entity.

The agro-weather station's system architecture, emphasizing interoperability and efficiency. It opts for Docker
containerization over virtualization for system abstraction, due to its advantages in scalability and performance.
The system is built on open-source technologies (Debian OS, Docker) to reduce costs and allow customization.
It employs a hybrid centralized/distributed design for device connection, ensuring portability and compatibility.
Wireless nodes use standardized protocols (MQTT) for plug-and-play interoperability. The GUI prioritizes
usability and data visibility. Al-powered features, leveraging Google Colab for resource-efficient background
analysis, support informed decision-making. A multi-agent system (MAS) approach using Docker enhances
modularity and maintainability, enabling efficient service upgrades via a SUS (Start, Upgrade, Stop) approach
with secure script management.

Quality Requirements

Docker achieves interoperability (Compatibility) by creating standardized, portable
containers for each system service, minimizing dependency conflicts. This allows
Compatibility seamless communication between modules using open-source technologies and
standardized protocols like MQTT, ensuring compatibility across diverse deployment
environments.
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Docker contributes to scalability (Flexibility) in this system by:

Independent Service Scaling: Individual services within Docker containers can be
scaled up or down based on demand, without affecting other components.
Orchestration with Kubernetes: Docker integrates with Kubernetes, enabling
automated scaling and management of containerized services across multiple
nodes.

Flexibility

Docker enhances maintainability (Modularity, Modifiability, Testability, and
Reusability) in this system through:

Modular Updates: Containerized services enable isolated updates and fixes,
reducing the risk of system-wide disruptions.

Simplified Troubleshooting: Consistent environments within containers streamline
debugging and issue resolution.

Version Control: Docker images allow for versioning and rollback capabilities,
simplifying software management.

Automated Deployment: Docker facilitates automated deployments, reducing
manual intervention and potential errors.

Maintainability

Docker contributes to Performance/Efficiency in this system by:
Performance/Efficiency | Resource Optimization: Docker's efficient resource utilization allows for denser
deployments, enabling the system to handle increased workloads.

Operability is archived by remote access to the deployed platform and its
components (Web app and SSH).

KBRef-14

loT Domain Smart City

Architecture Secure Publish-Subscribe

The architecture facilitates the transmission of vehicle distress signals to emergency services using a publish-
subscribe model, specifically designed to function even in environments with limited traditional network
connectivity.

Interaction Capability

It employs a hybrid communication approach:

1.Edge Communication (Vehicle-to-Infrastructure): Uses MQTT-SN over Zigbee for low-power, short-range
communication.

1.1.ClientApp (Publisher): Runs on the vehicle, broadcasts distress messages (containing VIN, location) via
Zigbee.

1.2.ForwardApp (Forwarder): Optional component, potentially on other vehicles or static units, receives MQTT-
SN messages via Zigbee and relays them towards the gateway.

1.3.Road-side Infrastructure (MQTT-SN Gateway): Receives MQTT-SN messages via Zigbee from ClientApps
or ForwardApps.

2.Backend Communication (Infrastructure-to-Services): Uses MQTT over TLS for secure communication over
standard IP networks.

2.1.The Gateway translates MQTT-SN messages to MQTT and forwards them securely (via TLS) to the broker.

2.2.Control Centre (MQTT Broker): Central component that manages subscriptions and routes messages based
on topics (e.g., distress signals) to appropriate subscribers.
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2.3.Emergency Services (Subscribers): Applications used by emergency responders, subscribing to relevant
topics on the MQTT Broker to receive distress signals.

The core function is asynchronous distress signal dissemination from a vehicle (ClientApp) potentially via
intermediate forwarders (ForwardApp) to a gateway, then through a central broker to subscribed emergency
services. The architecture explicitly addresses the "weakest link" identified in similar systems — the client-to-
gateway communication — by incorporating MQTT-SN forwarders and defining requirements for this segment.
Quality Requirements
Confidentiality: The architecture requires payload data encryption (SR3) throughout
its journey, ensuring only authorized subscribers can read it. It also mandates secure
channels (TLS) for communication segments involving the Gateway, Broker, and
Subscribers.

Privacy: The architecture requires mechanisms like digital signatures, MACs, or

hashing to allow subscribers to verify that neither the message payload nor the

Security header has been tampered with during transit. TLS provides integrity for backend
communication segments.

Authenticity: The architecture mandates verification of the message origin by the

subscriber and requires the Broker to verify the identity of publishers and

subscribers before allowing communication (Authenticity).

Non-Repudiation: The proposed use of digital signatures for authentication and
integrity inherently provides non-repudiation capabilities if implemented correctly.

The architecture specifically selects MQTT-SN and Zigbee for the edge
Performance/Efficiency | communication due to their lightweight nature and suitability for devices with
"restricted power and memory capabilities" (Resource Utilization).

KBRef-15

loT Domain Healthcare

Architecture Reliable Mobile Healthcare

The proposed architecture presents a three-layered system (Device/loT, Fog, Cloud) for pervasive healthcare
monitoring. A key innovation is the division of the Fog layer into two sub-layers (Fog Node and Smart Gateway)
to better distribute responsibilities and enhance specific quality attributes. The architecture aims explicitly to
address non-functional requirements like interoperability, reliability, availability, and response time, leveraging
best practices from loT, Fog, and Cloud paradigms. Its design has been formally modeled (GTS, 4+1 views) and
evaluated (Model Checking, ATAM).

Quality Requirements

Performance Efficiency is a key driver for the Fog layer design. The architecture
aims to reduce latency and overhead (Time Behaviour and Resource Utilization), by:

Performing time-sensitive analysis and real-time decision making in the Fog layer
Performance/Efficiency | (specifically Smart Gateway), closer to the user, reducing cloud round-trip time.
Dividing Fog responsibilities: Fog Nodes handle basic connectivity/status, while
Smart Gateways handle heavier local processing, storage, and scheduling, reducing
overhead on individual nodes. Local processing minimizes delays for critical events.
Scheduling optimizes resource usage for efficient task completion.

Availability are central to this architecture, achieved largely through its innovative
two-sub-layer Fog design that effectively distributes load. Crucially, local processing
at the Smart Gateway level provides fault tolerance, enabling critical functions like
emergency detection even without internet access. Workflow scheduling further
ensures reliable performance under load, while integrated data consistency
mechanisms maintain trustworthy information, especially vital during patient mobility.

Reliability
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loT Domain Smart Farm
Architecture Layered

It is a six-layer architecture designed to structure the technological infrastructure for smart indoor farms. This
architecture aims to provide a framework for collecting data from the physical environment, transmitting it for
processing, analyzing it to derive insights and make decisions, and presenting information and control
capabilities to users and business stakeholders. It conceptualizes the flow from physical devices to business
value, leveraging modern technologies to create controlled, intelligent farming environments.

The layers are:

AgriSense Layer: The physical layer containing sensors (for soil moisture, temp, humidity, pH, cameras, etc.),
actuators (motors, relays), micro-controllers, and tags (RFID) deployed on the farm to monitor the environment
and plant status and perform actions.

Connectivity Layer: Responsible for routing data from the AgriSense layer upwards. It uses various
communication technologies (Zigbee, Bluetooth, IEEE 802.x standards, GSM/GPRS) and network equipment
(gateways, routers) along with web service protocols (SOAP, REST) for application communication.

Intermediate Layer: Acts as a bridge, facilitating communication between devices (AgriSense) and higher layers.
It uses data protocols like MQTT, CoAP, and XMPP-loT for bidirectional exchange, performs short-term data
handling, aggregation, and protocol translation to enhance interoperability.

Core Data Handling Layer: The central processing and storage hub. It utilizes technologies like Cloud
Computing, Big Data (e.g., HDFS for storage), databases, and Machine Learning/Al for long-term data analysis,
decision-making (e.g., yield prediction, health monitoring, resource optimization), and management services.

Farmer Experience Layer: The user-facing layer that delivers services, information, predictions, and analysis
reports to farmers via interfaces like mobile apps or customized web applications, enabling remote monitoring
and control and potentially collecting user feedback.

Agri-Business Layer: Focuses on the overall system management, economic viability, and stakeholder
integration. It defines profit models, manages services across layers, utilizes data analysis tools (AgBiz Logic,
TOA-MD), and drives concepts like the Agricultural Value Chain (AVC).

This layered approach aims to structure the complex interactions within a smart indoor farm, leveraging
technologies like 10T, WSN, Cloud Computing, Big Data, and Al to enable precision agriculture and move
towards Agriculture 4.0 concepts within a controlled indoor setting.

Quality Requirements
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Addresses performance through efficient communication protocols, fast cloud
processing, optimization algorithms for resource utilization (energy, water, nutrients),
and energy-saving strategies (Green loT).

Storing all that data reliably is crucial. What if one computer in the cloud fails? That's
where HDFS (Hadoop Distributed File System) often steps in within the cloud
environment. Think of HDFS as a super-smart, ultra-reliable filing system designed
for huge datasets. It automatically breaks down the incoming data streams and
copies pieces across many different computers in the cloud. If one computer goes
down, the data isn't lost because copies exist elsewhere, ensuring the farm's
historical records are safe and always available for analysis — it provides efficient
distributed storage with built-in safety nets.

With all this data safely stored and accessible in the cloud brain, how does the farm
make smart decisions? How does it decide the absolute best lighting schedule to
maximize growth while minimizing electricity cost, or the perfect fertilizer mix based
on sensor readings and crop type? This requires complex calculations and balancing
competing goals. That's the role of Optimization Algorithms (like PSO, MOEAs, GA,
LP). These are sophisticated mathematical tools, like expert planners running in the
cloud. They sift through all the possibilities and constraints (water available, energy
cost, desired yield) to find the optimal strategy or plan — the most efficient way to
allocate resources or schedule actions.

While optimization algorithms handle the big-picture planning, something needs to
manage the immediate, second-to-second adjustments. How do you keep the
temperature exactly at 22°C or the humidity precisely at 65%? That's where PID
(Proportional-Integral-Derivative) and Fuzzy Controllers act like highly responsive
thermostats. A PID controller constantly measures the current state (e.g.,
temperature), compares it to the target, and makes precise, calculated adjustments
to the heater or cooler to minimize the error quickly and smoothly. Fuzzy controllers
are similar but excel when dealing with less precise inputs or rules, mimicking
human-like reasoning (e.g., "if it's getting a bit warm and slightly humid, reduce
heating a little"). They keep the environment stable based on the targets set,
perhaps by the optimization algorithms.

Finally, underlying all of this is a growing concern for sustainability and energy use.
Green loT isn't a single technology, but an approach or philosophy applied
throughout the system. It means choosing those energy-sipping Zigbee protocols,
designing algorithms that explicitly consider energy consumption as a factor to
minimize, putting devices to sleep when inactive, and potentially optimizing data
transmission schedules. It's about making the entire smart farm operation as energy-
efficient and environmentally friendly as possible, from the smallest sensor to the
cloud data centers.

Layered architecture is explicitly structured into distinct layers with specific
Maintainability responsibilities (sensing, connectivity, data handling, etc.), promoting modularity and
separation of concerns.

Performance/Efficiency

Layered architecture acknowledges interoperability challenges with diverse
components. The Intermediate Layer explicitly aims to improve it via protocol
translation. Proposes a software ecosystem as a potential solution. Uses standard
protocols.

Compatibility

Layered architecture allows customization (apps, ecosystems). Mentions adapting
Flexibility models from other domains. The layered structure inherently supports adapting or
replacing components within layers for different needs or technologies (Adaptability).

KBRef-17

loT Domain Smart City

Architecture Edge Computing-based Fault Tolerant Framework
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This describes a proposed framework designed for fault-tolerant edge computing in loT environments,
particularly focusing on smart mobility applications. The architecture emphasizes dynamic recovery from node,
network, and data failures while leveraging edge processing for low latency and reduced bandwidth
consumption, all within the constraints of limited edge resources managed via software containers.

The framework is structured into four distinct layers:

The foundation is the Device Layer, comprising various sensors, computing devices, and information systems
responsible for collecting vast amounts of real-time data directly at the network edge. This layer supports on-
device computation and can integrate external processing modules for simpler sensors.

Next, the Communication Layer establishes a unified publish/subscribe pipeline. It uses O-MI and O-DF
messaging standards to enable peer-to-peer communication, publish real-time data, and crucially, replicate this
data locally among edge devices. This local replication ensures data availability and overcomes network faults.

Overseeing resilience, the Management Layer employs the Kubernetes framework to orchestrate the
deployment and operation of the data processing pipeline. Its key function is to provide node-level fault tolerance
by automatically rescheduling failed processing tasks onto other available nodes within the edge cluster,
transparently handling hardware failures.

Finally, the Application Layer hosts the end-user IoT applications, such as vehicular network-based smart
mobility services. These applications leverage the fault tolerance, low latency, and efficient data handling
provided by the underlying layers.

In essence, the framework provides a robust, layered approach using specific standards (O-MI/O-DF) and
orchestration tools (Kubernetes) to build resilient loT systems that can handle failures gracefully while optimizing
performance and resource usage through edge processing and local data replication.

Quality Requirements

The architecture is designed to automatically handle failures (Fault Tolerance). Node
failures are managed by rescheduling processing tasks on other available nodes.
Network and data failures are addressed by replicating data locally among devices
Reliability in a cluster using a publish/subscribe mechanism. The management layer itself is
designed to avoid single points of failure.

Kubernetes is used in the Management Layer to orchestrate processing stages,
reschedule failed tasks (node fault tolerance), and ensure high availability.

The proposed architecture significantly addresses Performance Efficiency by
strategically placing computation closer to the data sources in an edge-centric
environment. This approach directly tackles Time Behavior, minimizing the physical
distance data travels and thus ensuring low latency for critical processing tasks.
Furthermore, it optimizes Resource Utilization by drastically reducing the amount of
network bandwidth consumed, as raw data doesn't need extensive transmission.
Recognizing the often limited resources available at the edge, the framework
employs software containers (implicitly managed by Kubernetes) to efficiently
package and manage applications, ensuring effective use of the available
computational power and memory within those constraints (Resource Utilization).

Performance/Efficiency

The Management Layer uses Kubernetes to "orchestrate the placement of
processing stages." Kubernetes is inherently designed to manage applications
across a cluster of nodes. While the text highlights its use for rescheduling failed
Flexibility tasks (fault tolerance), the same orchestration capabilities allow Kubernetes to scale
applications horizontally by deploying more instances (pods) of processing stages
across available nodes as load increases. It can also manage the addition of new
nodes to the cluster to increase overall capacity (Scalability).

KBRef-18
loT Domain Smart City
Architecture Layered
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A layered architecture for a panic attack-based disaster evacuation system. The architecture is divided into three
major layers:

Data Acquisition Layer: Collects data from various loT sensors, categorized into:

Health-related attributes (e.g., heart rate, chest pain) using ECG, piezoelectric, and other sensors.
Environmental influent attributes (e.g., temperature, smoke) using temperature, pressure, infrared, and other
Sensors.

Location attributes (coordinates) of users and disaster sites.

Energy Efficient Event Classification Fog Layer: Processes data from the Data Acquisition Layer to classify the
health state of users (Fine or Not Fine) while conserving energy. It contains:

Event Classification Layer: Uses a Fuzzy K-Nearest Neighbor algorithm to determine the user's health status.
Energy Conservation Layer: Consists of Spatio-temporal Analysis-based Data Selection and Dimensionality
Reduction sublayers to minimize data transmission energy consumption.

Components: Sensor Microcontroller Unit (SMU) on a mobile phone synchronizes data and performs initial event
classification. An Intelligent Gateway Node (IGN) at a regional server adds further energy efficiency by reducing
data dimensions before sending it to the cloud.

Temporal Health Prediction and Geographic Mapping Cloud Layer: Predicts future health states and prioritizes
evacuation efforts. It includes:

Temporal Health Prediction Layer: Forecasts future panic attacks using past and current health data.
Geographic Analysis Layer: Determines evacuation priorities for individuals and regions based on predicted
health status and location, categorizing individuals as Extremely, Moderate, Mildly panicked, or normal.

The architecture prioritizes accurate data acquisition, energy-efficient processing at the fog layer, and predictive
analysis at the cloud layer to optimize disaster evacuation strategies.

Quality Requirements

Energy efficiency (Resource Utilization) is achieved by selectively choosing and
reducing the amount of data (via spatio-temporal analysis and dimensionality
reduction) that needs to be transmitted from the resource-constrained fog devices
(SMUs and sensors) to the cloud. This is accomplished through intelligent data
selection, dimensionality reduction, and hierarchical processing within the fog layer.
By minimizing data transmission, architecture aims to extend the battery life of the
fog devices and sensors, which is crucial in disaster scenarios where power may be

Performance/Efficiency

limited.
loT Domain Generic
Architecture Self-Adaptive Hybrid loT-ML Localization
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The proposed "Self-Adaptive Hybrid loT-ML Localization" architecture is designed as a distributed system
featuring two primary, loosely coupled components connected via middleware: an Internet-of-Things (loT)
Platform and a Localization Module. Its architectural style is considered Hybrid, integrating a Layered approach
within the loT platform (spanning Hardware, Data, Business, Display, and Ul layers), likely leveraging
Microservices for implementation as indicated by its use of the Spring Boot framework, and adopting a Service-
Oriented/Component-Based structure for the overall separation between the platform and the localization logic.

The loT Platform, deployed on a remote cloud server like Alibaba Cloud, handles device provisioning,
management, and automation. It ingests raw sensor data (RSSI) from Bluetooth gateways using the MQTT
protocol, performs initial data processing like parsing and filtering within its Business Logic layer (potentially
interacting with an MS SQL database for user/device data), and manages data visualization through its upper
layers.

The distinct Localization Module is responsible for the core positioning calculations. It employs a novel LSTM-
based deep learning model combined with an MLP to accurately estimate distance from RSSI, moving beyond
traditional propagation models. Position is then determined using trilateration techniques enhanced with self-
adaptive mechanisms like "elastic radius intersecting" and "multiple weighted centroid localization" to ensure
robustness against inaccurate measurements. Finally, it utilizes a self-adaptive Kalman Filter (specifically UKF)
to smooth the calculated trajectory, improving overall stability and accuracy over time. This module runs as a
separate component, acting as a client in the gRPC communication setup.

Communication between the IoT Platform (server) and the Localization Module (client) is handled by gRPC,
ensuring loose coupling by exchanging only necessary processed RSSI data and receiving back calculated
coordinates. Data management involves handling raw RSSI streams, processed data exchanged via MQTT and
gRPC, likely persistent storage for platform management, and the crucial offline collection of ground-truth data
for training the LSTM distance estimator. Key technologies underpinning this architecture include BLE 5.0,
Spring Boot, MQTT, gRPC, LSTM, MLP, and Kalman Filters (UKF).

Quality Requirements

Refining position estimates using weighted centroids and Kalman filtering

runeeEl et (Functional Correctness).

The system is explicitly divided into two main components (Modularity), with distinct
responsibilities (loT platform vs. Localization algorithms), connected via a defined
interface (QRPC). The loT platform itself uses a multi-layer structure and
microservices.

Maintainability

Uses standard protocols (MQTT, gRPC) for communication between different system
Compatibility parts (hardware-platform, platform-module), enabling components to interact across
potential language/environment differences, interoperability.

Loose coupling via gRPC ensures only necessary data is exchanged, minimizing
Performance/Efficiency | overhead compared to tighter integration and preventing components from
negatively impacting each other's resource usage.

Provides a Web Ul (Thymeleaf - a modern server-side Java template engine for both
Interaction Capability web and standalone environments [thymeleaf.og]) for users to view estimated
positions, trajectories, and system status. Allows basic control via settings toggles.

KBRef-20
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Architecture Cloud-Edge EV Smart Charging
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The proposed architecture describes an IoT system designed to facilitate user-accepted smart charging for
Electric Vehicles (EVs). It aims to make the charging process tangible and controllable for the user while
enabling optimization based on factors like electricity price and battery health. The system comprises a user-
facing web app (Smart Charging Wizard with Ul and Optimization module), a backend session manager (CSH),
a communication broker (MQTT), and a Programmable Logic Controller (PLC) interfacing directly with the
charging station. This architecture explicitly and implicitly addresses several key quality attributes.

Quality Requirements

Interaction Capability

Interaction Capability (Operability) is a primary focus, driven by the need for user
acceptance. This is achieved through the dedicated Smart Charging Wizard UI,
which provides a simple, interactive, web-based interface (built with Streamlit) for
users to easily set charging parameters (SOC, times), visualize the optimized
charging plan (power profile, SOC evolution), monitor the live charging process, and
start/stop/adjust sessions. This transparency makes the complex optimization
tangible and controllable for the user.

The architecture uses standard protocols (HTTP, MQTT, JSON, UDP, IEC 61851) for

Compatibility communication between diverse components (web app, cloud services, PLC,
station). The PLC API aims for manufacturer independence (Interoperability).
The CSH is designed for continuous availability using containerization and
Reliability orchestration (Docker, Kubernetes), supporting resilience and access from multiple

points. Its independence prevents single points of failure tied directly to the Wizard.

Maintainability

The generic Programmable Logic Controller (PLC) API is designed to be reusable
across different charging station types.
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Safety (Risk Identification) is explicitly addressed in the described architecture. The
design incorporates multiple mechanisms primarily implemented at the
Programmable Logic Controller (PLC) level (safety limits, current limit checks,
message validation, adherence to IEC 61851) and within the optimization logic
(battery operating constraints).

In essence, the system achieves safety through active prevention and adherence to
standards, primarily managed by the PLC and the optimization logic:

1.By Enforcing Hard Limits (PLC Safety & Current Limits): The PLC acts as a vigilant
guard. It constantly checks if the requested charging power or current exceeds the
predefined maximum safe levels for the station, the EV, or the electrical circuit. If a
command asks for too much, the PLC blocks or reduces it.

How it mitigates: This directly prevents overheating of wires, components (in the
station or EV), and potentially the building's wiring, thus mitigating fire and electrical
shock risks (Health & Safety). It also prevents physical damage to the expensive
charging equipment and the EV's battery/charger due to electrical stress (Economic
Risk).

2.By Validating Instructions (PLC Message Validation): Before acting on any
command from the cloud, the PLC checks if the instruction makes sense and is
correctly formatted. If it receives a garbled or illogical request, it rejects it.

How it mitigates: This prevents the system from performing unpredictable or
Safety dangerous actions based on faulty data, safeguarding against potential electrical
hazards (Health & Safety) and preventing operations that could damage equipment
(Economic Risk).

3.By Following Established Rules (IEC 61851 Standard): The system uses a well-
defined industry standard for the charging communication itself. This standard
includes built-in safety handshakes and checks (like verifying a proper connection
before power flows).

How it mitigates: This ensures fundamental electrical safety protocols are followed,
reducing risks like energizing an improperly connected cable (Health & Safety) and
ensuring compatible, non-damaging interaction between the car and station
(Economic Risk).

4. By Respecting Component Capabilities (Battery Constraints in Optimization): The
smart charging plan itself is designed not to push the EV battery beyond its safe
operating conditions (temperature, charge level, power input).

How it mitigates: This avoids stressing the battery, which reduces the risk of
dangerous internal failures like thermal runaway (Health & Safety) and prevents
accelerated degradation or damage, preserving the battery's lifespan and value
(Economic Risk).

In short, the architecture uses the PLC as a local safety enforcer and relies on
standardized protocols and intelligent planning to keep the charging process within

safe physical and electrical boundaries, protecting both people and equipment.
KBRef-21
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Architecture Layered
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The architecture is designed to support Ambient Assisted Living (AAL) systems by providing reliable and timely
indoor and outdoor positioning information within an Internet of Things (loT) infrastructure. It aims to address the
specific needs of AAL, such as real-time responsiveness crucial for critical event detection, while effectively
managing the inherent complexities of IoT environments, including device heterogeneity, the need for scalability,
and resource constraints. To achieve these goals, the architecture adopts a layered approach that strategically
incorporates Fog and Mist computing paradigms alongside traditional Cloud computing elements.

Architecture Overview:

The architecture is structured across four main logical layers. At the edge, the Perception Layer utilizes Mist
computing principles and contains a diverse array of sensors capturing health metrics, environmental conditions,
and location data via technologies like BLE and IMU along with actuators for environmental interaction. Mist
computing nodes within this layer handle the initial data gathering, such as capturing BLE packets from
wearables, managing device interactions, and performing basic data processing or forwarding.

Moving upwards, the Fog Layer consists of more powerful nodes, such as environment or area gateways. These
nodes bring computation closer to the end-user, handling intermediate processing tasks like executing
localization algorithms, detecting Activities of Daily Living (ADL) and critical events, and coordinating local
responses. This layer employs a hierarchical structure to manage different environmental scopes effectively.

The Cloud Layer serves as the central backend, providing robust capabilities for centralized data storage,
complex data analysis, and overall system management. It leverages a microservices-based architecture
offering services for data persistence, context-awareness, advanced localization/mapping, notifications,
security/authorization, and fault management. Integration with external systems and applications is achieved
through well-defined RESTful APls.

Finally, the Application Layer hosts the end-user applications. These applications, potentially used by caregivers
for remote monitoring or by assisted individuals to control their environment, consume the data processed by the
lower layers and interact with the system's functionalities through the APIs provided by the Cloud Layer. Key
technological decisions underpinning this structure include the use of BLE for indoor localization and GPS for
outdoor tracking, the strategic distribution of processing load across Fog/Mist layers, and the adoption of
microservices with RESTful APIs in the cloud to ensure flexibility and manageability.

Quality Requirements

Using Fog computing, comproved by simulation results demonstrate a significant
reduction in latency (Time Behaviour), making it suitable for "real-time applications".

Performance/Efficiency | Fog-centric processing reduces data transmission to the cloud, resulting in a
"significant decrease in network usage". This leads to a "substantial reduction in
cloud processing costs". A "slight reduction" in cloud server energy consumption was
also observed (Resource Utilization).

The Cloud Layer utilizes "RESTful API to integrate with the "assisted ambient" and
another API for application integration (Interoperability). This standard-based
interface promotes interoperability with diverse applications and potentially other
systems.

Compatibility

The architecture employs a clear layered structure, promoting modularity. The use of
Maintainability RESTful APIs significantly enhances maintainability by allowing individual
components to be modified independently.

KBRef-22
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Architecture A4loT (Anyplace 4.0 loT)
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The AdloT architecture is presented as a novel, open-source solution designed specifically for 0T localization
within diverse "smart spaces" like factories, hospitals, and ships. Recognizing the limitations of satellite-based
positioning indoors, A4loT utilizes signal fingerprinting principles to integrate and manage a wide array of
localization technologies (including Wi-Fi, BLE, Cellular, UWB, and Computer Vision) under a unified framework.
Its core purpose is to provide accurate (targeting room-level, = 2m) localization data, running efficiently on edge
devices (from Raspberry Pi up to Datacenters) and integrating seamlessly with existing software ecosystems via
Web 2.0 endpoints. It supports crowdsourcing for data collection and aims to address real-world industrial
requirements, such as those from smart factories.

Architecture Overview:
A4loT is structured into distinct frontend and backend components:

1.Backend:

1.1.Server: Built using the Play framework, it contains the core application logic, exposes a RESTful API for
interaction (crowdsourcing, queries), handles OAuth 2.0 authentication, performs floorplan tiling, and provides
visual analytics capabilities.

1.2.Data Store: Manages different types of data using specialized stores: a Distributed Filesystem (DFS, e.g.,
GlusterFS) for raw data/files, a Time-series store (specifically InfluxDB) for loT sensor readings and tracking
data, and a Document store (initially Couchbase, migrating towards MongoDB) for JSON objects and potentially
replacing some spatial views.

2.Frontend:

2.1.Web Applications: Includes modules like Architect (for floorplan design/POl management), Viewer
(search/navigation engine), and Analytics (visualization dashboard, FMS - Fig. 6), built with HTML5, CSS3, and
AngularJS.

2.2 Library: Provides core functionalities reusable by clients. Key libraries are anyplace-core (generic
Java/Gradle library wrapping API endpoints) and anyplace-android (Android-specific version handling
permissions, background tasks, caching).

2.3.10T Clients: Reference implementations and tools enabling deployment on various platforms (Linux, macOS,
Windows, Android, RobotOS) using the provided libraries, including a Command Line Interface (CLI).

Key technologies and design decisions include fingerprinting (primarily RSSI), edge computing deployment
(Raspberry Pi to cluster), containerization via Docker (Sec V), crowdsourcing support, RESTful APIs, use of
specialized databases (InfluxDB, GlusterFS, MongoDB), and modular client libraries.

Quality Requirements

With spatio temporal store (InfluxDB) we can now consume high-volume input

TR 2 = streams to provide real-time loT tracking (Time-behaviour).

Our production environment uses a 3-node cluster with two replicas, for both the
database engines and the DFS (Distributed Filesystem). This setup allows for a full
Reliability operation with just a single node active at any time.

HAProxy provides protection from attacks like DDoS and supports availability.

All communication is encrypted even in internal networks, as A4loT image

SEEILST automatically creates and uses SSL certificates (Confidentiality).
Flexibilit It utilizes Docker to enable the deployment of single-node or multi-node
y configurations, regardless of any dependencies or the underlying OS (Adaptability).
KBRef-23
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Architecture Smart Geo Layers (SGeol.)

SGeol is designed as a modular, open, and scalable platform to simplify smart city application development. It
uses a distributed middleware architecture, built on open standards like NGSI-LD and RESTful APIs, to ensure
interoperability and ease of integration. This architecture prioritizes data management by supporting diverse
data formats and utilizing specialized databases for context, geographic, and semantic information.

Key characteristics include:

Interoperability: Seamless integration with external systems through open protocols and standardized APls.
Data Heterogeneity: Ability to handle and integrate data from various sources and formats.

Modular Design: Independent components for core functionalities like security, loT management, and data
analysis.

Scalability: Designed for cloud deployment, with future plans for Kubernetes to enhance self-scalability.

Security: Robust security measures through OAuth and role-based access control.

Data Analysis: Real-time and batch processing capabilities for deriving insights from urban data.

loT Integration: Simplified connection and management of 10T devices.

Essentially, SGeolL provides a comprehensive, flexible, and secure framework for building smart city applications
by abstracting complexities and leveraging powerful middleware services.

Quality Requirements

Security in the SGeolL architecture is achieved through a combination of
authentication, authorization, and access control mechanisms, leveraging existing
middleware services and implementing a dedicated Security Manager component.
Here's a breakdown:

Authentication (Identity Manager):

SGeol utilizes the Identity Manager component, which is realized by FIWARE's
Keyrock, to handle user and application authentication.

This component manages user credentials, issues access tokens (using OAuth),
and validates these tokens when requests are made to SGeolL APls.

When a request is sent to SGeol, the Security Manager extracts the access token
from the HTTP header and forwards it to the Identity Manager for verification. If the
token is invalid, access is denied.

Authorization (Authorization PDP):

Once a user or application is authenticated, the Authorization PDP component
(FIWARE's AuthzForce) comes into play.

Security This component manages access policies that define what actions authenticated
users or applications are allowed to perform.

The Security Manager component queries the Authorization PDP to determine if the
user or application has the necessary permissions for the requested operation. If
authorized, the request proceeds; otherwise, access is denied.

Security Manager Component:

This component acts as a gatekeeper, intercepting all requests to the SGeolL APIs.
It enforces the security model, which is based on roles, access policies, and the
OAuth protocol.

It handles the interaction between the Identity Manager and Authorization PDP,
ensuring that only authenticated and authorized entities can access and manipulate
SGeol data.

This component effectively centralizes the security enforcement.

Role-Based Access Control:

The system uses roles to define permissions, which allows for granular control over
data access.
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In essence, SGeol's security is a two-step process: first, verifying the identity of the
requester (authentication), and then, checking if they have the right permissions to
perform the requested action (authorization). This is all managed by the Security
Manager, which uses the underlaying middleware services.

Flexibility

SGeol achieves scalability (Flexibility) primarily through its distributed architecture
and planned Kubernetes container (Docker) orchestration. Individual components
are designed for independent scaling, leveraging cloud infrastructure (OpenStack
currently, transitioning to Kubernetes). Kubernetes will automate deployment,
scaling, and fault management of containerized services, enhancing self-scalability
and resource optimization. This approach ensures the platform can adapt to varying
loads efficiently.

Performance/Efficiency

Containerization (Docker) and orchestration with Kubernetes: Docker
containerization simplifies deployment and resource management, while the planned
Kubernetes integration will further optimize resource utilization and automate
scaling, improving efficiency.

Compatibility

KBRef-24
loT Domain

The platform exposes its functionalities through high-level RESTful APIs, which are
widely used and well-understood. This allows developers to easily access and utilize
SGeol's services from various programming languages and platforms
(Interoperability).

Smart City

Architecture

Distributed Blockchain-SDN Based
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The proposed architecture is built using AWS serverless services. It aims to remotely monitor livestock, providing
insights into their health and environment. The architecture is divided into several key frames, each leveraging
specific AWS services:

AWS IoT Core: Manages and secures loT devices, handling device connection, communication (MQTT),
shadowing, authentication, and remote management.

Lambda: Serves as a versatile compute service, converting video frames, storing them in S3, transmitting them
to Rekognition, and updating DynamoDB metadata.

Data Recognition: Uses AWS Rekognition to analyze video frames, identifying animals, people, and objects,
detecting abnormal behavior, and sending alerts via Amazon Pinpoint.

Streaming Data: Employs Kinesis Data Streams for real-time data ingestion from loT devices. Kinesis Data
Firehose scales, groups, compresses, transforms, and encrypts data before storing it in S3.

Data Stores: Uses purpose-built databases like DynamoDB and Redshift to store events, deliver microservices,
and generate operational dashboards accessible through AWS AppSync.

Data Processing: Utilizes AWS Glue for ETL (Extract, Transform, Load) processes, preparing data for analysis.
Data Lake: Leverages Amazon S3 for storing both raw and processed data, enabling decoupled compute and
storage using Amazon EMR for scalable data processing.

Logging: Uses Amazon CloudWatch for collecting metrics, logs, and audits, setting alarms, and triggering scaling
operations.

Machine Learning: Employs Amazon SageMaker for building, training, and deploying machine learning models.
It uses boosted decision trees for health prediction and linear regression for milk production forecasting. Edge
models on AWS loT Greengrass optimize battery power consumption.

Analytics: Uses Amazon Athena for querying data stored in S3 and Amazon QuickSight for creating scalable,
ML-powered business intelligence dashboards.

Presentation: Uses Amazon Route 53, Elastic Beanstalk, and Elastic Load Balancer to provide a scalable and
accessible web application.

User Identities: Secures access to the system using Amazon Cognito User and Identity Pools, providing features
like MFA, compromised credential checks, and account takeover protection.

The system comprises three types of participants: Livestock IoT Devices (collecting sensor data), Cameras
(monitoring animals), and loT Edge (acting as a mediator with AWS loT Greengrass core).

Data ingestion is critical, using Kinesis Data Streams and Firehose to handle high throughput and payload sizes
up to 24KB per request.

Overall, the architecture is designed to be scalable, resilient, and cost-effective by using AWS serverless
services.

Quality Requirements

The DistB-Condo architecture incorporates features to enhance performance
efficiency, notably energy savings via cluster head selection, optimized network
control and filtering via SDN, and potentially faster processing and load balancing
via NFV. However, the integration of Blockchain, while crucial for security, introduces
Performance/Efficiency | significant performance trade-offs in terms of latency (time behavior), resource
consumption (CPU, storage, bandwidth), and transaction throughput limits
(capacity). The overall performance efficiency depends heavily on the specific
implementation details and the balance struck between security requirements and
performance needs.
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Blockchain adds a robust layer of data-centric security, ensuring integrity,
Security confidentiality, non-repudiation, and authenticity of transactions via its distributed
ledger, cryptographic linking, consensus mechanisms, and smart contract validation.

KBRef-25

loT Domain Healthcare

Architecture Event-driven loT

This architecture proposes a layered approach for loT-aware systems, focusing on context interpretation, event
processing, and service execution.

The Context Layer defines the system's understanding of the current situation. It gathers data from
heterogeneous sources (user profiles, sensors), represented hierarchically using XML profiles with weighted
components.

This raw data undergoes filtration to remove noise and errors. Specific filters are applied to derive measurable
parameters (like heart rate from continuous signals). The resulting context model is then generated and
broadcast for decision-making.

The Event Layer processes streams of events based on changes detected in the context layer, utilizing Complex
Event Processing (CEP). It supports both offline processing (using stored data) and online processing (using
CEP for real-time analysis). Key components convert context changes into events, guarantee complete
processing (considering event priorities for performance), use a CEP engine for complex event analysis, and
trigger real-time responses via an Event Trigger component.

The Service Layer is activated by the Event Trigger. It manages the execution of appropriate services based on
detected events. A Service Manager determines if a service is simple or composite and queues requests. A
Service Coordinator selects the appropriate service for execution, potentially suspending others. A Service
Execution unit runs the chosen service, while a Logger unit records any execution failures and reports them
back to the manager.

Quality Requirements

The architecture aims for timely responses by processing events as they happen
("online," "real-time") using specialized techniques (CEP, in-memory processing) and
by prioritizing important events to ensure they are handled promptly (Time
Behaviour).

Performance/Efficiency

The system strives for correctness by applying Event processing logic (within the
Event Processing component from CEP) and filters to raw data to remove
noise/errors and derive accurate values (e.g., heart rate). It aims for completeness
by ensuring that all relevant events are processed before triggering actions.

Functional Suitability

Reliability, defined as the timely and consistent reception of valid data packets, is
primarily demonstrated through verification and testing, rather than specific
resilience features described here. This involves validating incoming packets against
Reliability protocols, measuring inter-packet timing to confirm low delay, and checking for
packet loss (TCP-IP protocol and Client/Server architecture for data communication).
Ultimately, the claim of reliability relies on experimental results indicating acceptable

performance under the tested conditions.
KBRef-26
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The SmartGC architecture is presented as a layered system designed to test, deploy, and manage garbage
collection routes within a smart city context, leveraging the Artificial Transportation Systems (ATS) concept as its
underlying methodology. It explicitly defines functionalities and considers quality attributes crucial for its
stakeholders (regulators, operators, app providers, users). The architecture integrates data from various
sources, processes it using semantic technologies and simulation, and provides interfaces for monitoring,
decision support, and application development, often leveraging components from the FIWARE platform for

implementation.

Quality Requirements

Performance/Efficiency

Performance Efficiency is addressed through architectural choices supporting
responsiveness and efficient resource use. Real-time capabilities are crucial
(monitoring, communication, data processing). This is supported by NoSQL
databases for handling large data volumes, indexed RDF stores for fast queries,
stream processing capabilities within the microservice-based Execution Manager,
and publish-subscribe mechanisms (like FIWARE Orion). Simulation aims to find
optimized (efficient) routes.

FIWARE provides core components like Orion and loT Agents (IDAS), and security
GEs (mentioned later in the text like Keyrock, AuthZForce, PEP Proxy). It then relies
on integrating with standard NoSQL databases (like MongoDB), processing engines
(Stream/Batch), semantic stores (RDF Stores), and domain-specific tools
(ATS/Simulation) to build complete solutions, often facilitated by custom middleware
(SGEOL) or architectural patterns (Microservices).

Interaction Capability

Interaction Capability is addressed through dedicated user interface components
and specific agent roles. The Dashboard component provides visualizations for
monitoring and decision support. The Open Data Publisher (CKAN) offers a user-
friendly portal. The test-bed aims for easy visual interpretation. The Tutor Agent
specifically addresses operator training (Learnability). FIWARE Wirecloud facilitates
building usable web interfaces (widgets/mashups).

Security

Security is primarily addressed through robust Access Control. A dedicated Security
Control component intercepts API requests, evaluates policies based on
roles/permissions, and enforces access decisions. The implementation explicitly
leverages FIWARE security GEs (FIWARE Platform): Keyrock for identity
management and authentication, AuthZForce for authorization policy management
(using XACML), and PEP Proxy as the enforcement point (Authenticity and
Confidentiality).

Flexibility

Flexibility is addressed through Scalability. Scalability is explicitly mentioned as a
benefit of modularity and supported by technology choices like NoSQL databases
and a microservice-based Execution Manager designed to handle large user/data
loads. The InserSCSimulator used in implementation is noted for "massive
scalability".

Maintainability

Maintainability is supported by the explicit choice of a layered architecture to
enhance modifiability. Components are designed to be modular and self-contained.
The Execution Manager uses a microservice architecture, further promoting
modularity. Using FIWARE leverages potentially well-maintained, modular
components.
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FIWARE achieves interoperability using two main components working together with
the NGSI standard language:

FIWARE IoT Agents (like IDAS): Act as translators at the edge, converting data from

diverse loT devices (each with its own protocol) into the standard NGSI format. This

provides interoperable 10T device integration, as the rest of the system only needs to
Compatibility understand NGSI, not specific device protocols.

FIWARE Orion Context Broker: Serves as the central hub that manages this
standardized NGSI data. It stores the real-time status (context) of entities and allows
applications to query or subscribe to updates, also using the standard NGSI
interface. This ensures interoperable context data management, enabling different
applications to seamlessly share and react to real-time information.

KBRef-27

loT Domain Healthcare

Architecture Layered

Itis a five-layer architecture for an loT-based e-health system, prioritizing security, privacy, and real-world
applicability. It incorporates blockchain for secure data management, utilizing both public and private
mechanisms to ensure data integrity and authorized access. A fog layer is introduced to enhance performance
by processing sensitive patient data at the network edge, minimizing latency. The architecture is designed to
align with existing healthcare practices in Pakistan, facilitating remote patient monitoring through sensor data
transmitted to the cloud. The inclusion of an e-governance layer emphasizes regulatory oversight and
interoperability between e-health systems. The sensing layer gathers patient data, the application layer provides
user interfaces and real-time alerts, and the transmission layer securely transfers data to storage. The system
aims to improve healthcare in emerging countries like Pakistan, while addressing the security challenges
inherent in loT through blockchain integration.

Quality Requirements

Connecting loT devices at the network's edge, through fog computing, enhances e-
health system performance by: reducing latency, minimizing network congestion,
distributing processing loads, enabling real-time data analysis, and optimizing
bandwidth usage (Time Behaviour and Resource Utilization).

Performance/Efficiency

Blockchain is used as a distributed ledger to ensure data integrity and immutability
(Integrity). Data is stored in blocks with timestamps and cryptographic signatures,
making it tamper-proof (Non-repudiation).

Both public and private blockchain mechanisms are employed, controlling data
access and ensuring only authorized participants can view or modify information
through cryptographic keys and consensus (Confidentiality). This distributed
approach eliminates reliance on a central authority, enhancing security against
single points of failure (Authenticity).
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loT Domain Healthcare

Security

Architecture Cloud-based Secure Biometric
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1. Healthcare Cloud (Core):

General Concept: This is the central cloud-based environment provided by a third-party provider. It offers the
infrastructure (servers, storage, networking) and platform services needed to run the BamHealthCloud system.

Health Data Store (HDMS):

Purpose: Manages all patient-related information. This encompasses electronic health records (EHRs), lab
results, imaging studies, medical history, medications, and billing information. It ensures efficient storage,
retrieval, and updates of this data.

Layers:

Client Level: This is the user interface layer. It provides access to the data for doctors, nurses, administrators,
and potentially patients (with appropriate access controls). This layer would likely be implemented using web-
based or mobile applications.

Health Service Provider Level:

Administrative Level: Manages user accounts, permissions, resource allocation, and overall system
configuration.
Security Level: Where the Biometric Authentication Agent (BAA) operates, enforcing access control policies.

Data Center Level: Deals with the physical storage and management of the healthcare data. It ensures data
durability, backups, and disaster recovery. It also includes functionalities for data indexing and optimization for
efficient querying. This layer would leverage cloud storage services provided by the cloud provider (e.g., AWS
S3, Azure Blob Storage).

Security Manager:

Role: This component is responsible for enforcing all security policies within the system. It integrates with the
BAA to authenticate users and authorize access to specific data and functions.

Functions: In addition to user authentication, the Security Manager likely handles other security tasks, such as:

Data Encryption: Ensuring that sensitive data is encrypted both in transit and at rest.
Access Control Policies: Defining and enforcing fine-grained access control rules (e.g., allowing a doctor to view
a patient's records but not modify billing information).

Auditing: Logging all access attempts and data modifications for security monitoring and compliance purposes.

Intrusion Detection: Monitoring the system for suspicious activity and taking appropriate action (e.g., blocking an
IP address after multiple failed login attempts).

2. Biometric Authentication Agent (BAA) - Signature Dynamics:
Feature Extraction:

Details: The BAA captures dynamic characteristics of a signature, which are much harder to forge than static
features (like the visual appearance of the signature). Key dynamic features include:
X and Y Coordinates: The trajectory of the pen across the signature area.

Velocity: The speed of the pen at different points in the signature.

Time:* Total time taken to complete the signature.

Pen Angle: The angle of the pen relative to the writing surface.

Pen-Ups and Pen-Downs:* The number of times the pen is lifted off the writing surface.
Acceleration: The rate of change of velocity.

108




Hardware:* Digitizing tablets provide precise capture of these features. Smartphones equipped with signature
capture software are a more convenient (and potentially less secure) alternative.

Template Creation:

Process: The extracted features are preprocessed and organized into a template. Preprocessing might involve
normalization (scaling features to a common range) and noise reduction. The template represents a
mathematical model of the user's signature dynamics.

Neural Network Model:

Training: The templates are used to train a neural network. The neural network learns to distinguish between
genuine signatures and forgeries. Different types of neural networks could be used, but the text mentions a
feedforward neural network with Resilient Backpropagation.

Storage: The trained neural network is stored securely within the cloud.
Verification:

Process: When a user attempts to authenticate, their signature is captured, features are extracted, and these
features are fed into the trained neural network. The network outputs a score or probability indicating the
likelihood that the signature is genuine.

Matching: This score is compared to a threshold. If the score exceeds the threshold, the user is authenticated.
The threshold value may be adjusted based on the user's priority level.

3. Enroliment and Authentication Processes:
Enroliment (Phase I):

Quality Check: The "SigQuality checker" is a crucial step. It ensures that the signature samples are consistent,
complete, and free from excessive noise. This improves the accuracy of the biometric system.

Multiple Samples: The system likely requires multiple signature samples during enroliment to capture the natural
variations in a person's signature.

Authentication (Phase l):

Threshold Tuning: As mentioned, the authentication threshold is adjusted based on user priority. High-priority
users (e.g., doctors with access to sensitive patient data) have a higher threshold, requiring a more precise
signature match.

4. Priority-Based Access Control:

Purpose: To implement a fine-grained security model, limiting access to data based on user roles and
responsibilities.

Priority Levels (1-4):

Example Mapping (from Table 2, though specifics would vary):

Priority 4: Head Doctors/Senior Administrators (Full access)

Priority 3: Registered Doctors (Access to patient records)

Priority 2: Nurses/Technicians (Limited access to specific patient data)

Priority 1: Regular Staff/Clerical Staff (Limited access to administrative data)

Algorithm 1 (ALGOHealthSecurityCheck): This algorithm sets the authentication threshold based on the user's
priority. It likely performs a lookup in a table or applies a formula to determine the appropriate threshold for a
given priority level.

109




Algorithm 2 (ALGOHealthAuthentication): This algorithm performs the actual authentication process,
incorporating the threshold value set by ALGOHealthSecurityCheck.

5. MapReduce and Parallel Processing:

Hadoop Framework: Hadoop provides a distributed storage and processing platform.

MapReduce: A programming model for parallel processing of large datasets.

Application:

Signature Template Training: Training the neural network with a large dataset of signature templates can be
computationally intensive. MapReduce allows this training to be distributed across multiple machines,
significantly speeding up the process.

Covariance Calculation: The algorithm mentions calculating covariance on the input data sample. Covariance
calculations are common in statistical analysis and can be parallelized efficiently using MapReduce.

Parallel Authentication: Potentially, the verification process (matching the signature features against the
template) can also be parallelized to some extent, allowing multiple authentication requests to be processed
concurrently.

Quality Requirements

Parallelized MapReduce programming model is a key phrase that captures how
BamHealthCloud can efficiently process large volumes of healthcare data by
Flexibility distributing the workload across multiple computing nodes, providing scalability, cost-
effectiveness, and fault tolerance. It's a technical detail that underlines the overall
scalability of the architecture.

Parallelized MapReduce programming model is a key phrase that captures how
BamHealthCloud can efficiently process large volumes of healthcare data by
Performance/Efficiency | distributing the workload across multiple computing nodes, providing scalability, cost-
effectiveness, and fault tolerance. It's a technical detail that underlines the overall
scalability of the architecture.

MapReduce framework contributes to achieving availability in BamHealthCloud,
although it's more accurate to say it enhances availability rather than solely
achieving it. Here's why and how:

Replication of Data: Hadoop, the typical implementation of the MapReduce
framework, inherently involves the replication of data across multiple nodes in the
cluster. This means that if one node fails, the data is still available on other nodes.
This data replication is a core mechanism for ensuring availability.

Fault-Tolerant Task Execution: If a task fails on one node (due to hardware failure,
software error, etc.), the MapReduce framework automatically retries the task on
another available node. This ensures that the processing continues even if some
nodes experience problems.

Automatic Failover: In a well-configured Hadoop cluster, there are mechanisms for
automatic failover. If a critical component (like the NameNode, which manages the
file system) fails, a standby component can take over its role, minimizing downtime.
Distributed Nature: The distributed nature of MapReduce means that the workload is
spread across multiple nodes. This reduces the impact of a single node failure on
the overall system.

Reliability

The architecture employs biometric authentication using dynamic signature analysis
(Confidentiality, Integrity, and Authentication). A user's signature is captured (pen
strokes, speed, pressure) and used to train a neural network. This model is stored
Security securely in the cloud. During login, the user provides a signature, which is compared
to the stored model. Access is granted only if the signature matches, with higher
security thresholds for users with greater data access privileges. This method
enhances security by verifying identity based on unique behavioral characteristics.

KBRef-29
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loT Domain Healthcare
Architecture Edge-Secured Healthcare

The proposed SHS architecture explicitly targets improvements in Security (Confidentiality, Privacy, Access
Control) and Performance Efficiency (Latency, Time Behaviour, Resource Utilization) compared to traditional
cloud-based healthcare systems. It achieves this by introducing a dedicated Edge Computing layer that handles
crucial tasks like PPSE encryption and initial processing closer to the user. The architecture also implicitly
supports Maintainability through its modular, layered design. Key technologies enabling these qualities include
the Edge Computing paradigm itself, the specific PPSE technique, and a detailed, policy-based Access Control
mechanism.

Quality Requirements

Security, particularly Confidentiality and Access Control, is a core focus.
Confidentiality and privacy are achieved by encrypting PHI at the Edge layer using a
Privacy-Preserving Searchable Encryption (PPSE) technique before storage. This
allows searching over encrypted data without full decryption, limiting exposure.
Access Control is implemented via a dedicated module on the data server (using
components like PEP, PDP, PIP, PAP, AMs — indicative of an Attribute-Based Access
Control or similar policy-driven system) to strictly enforce policies and prevent
unauthorized users from accessing PHI.

Security

Performance Efficiency is a key driver for adopting the edge architecture. By placing
an Edge Computing layer closer to the data source (patients/sensors), the system
Performance/Efficiency | significantly reduces network latency and data transfer times compared to direct
cloud interaction, crucial for real-time monitoring and decision-making. This local
processing also demonstrably reduces power and energy consumption.

Maintainability is supported through Modularity. The architecture (Layered) is clearly
divided into layers (loT/Sensor, Edge, Cloud/Server) and functional modules
(Encryption, Access Control). Within these modules, distinct components are
Maintainability identified (e.g., Edge Gateway, Edge Server, Database Manager, AC, KG, QP, PEP,
PDP). This separation of concerns likely makes the system easier to understand,
modify, and test, as changes within one module or layer should have a relatively
contained impact.
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loT Domain Smart City
Architecture SAPPARCHI (Smart City)

The Sapparchi architecture explicitly prioritizes Scalability (Flexibility) and considers Maintainability and Security
by leveraging microservices, serverless concepts, and platform-provided mechanisms. Reliability, Compatibility,
and Portability are implicitly supported through design choices like load balancing, monitoring, message
queuing, standardized communication protocols (HTTP, AMQP via RabbitMQ), and containerization (Docker).
The use of distinct components and technologies like Nginx, RabbitMQ, Docker, MongoDB, and Redis underpins
the achievement of these quality attributes.

Quality Requirements

Flexibility, particularly the Scalability sub-characteristic, is a primary architectural
driver. It's achieved horizontally by dynamically increasing or decreasing instances of
serverless Actions and Microservices deployed in Docker containers across
distributed worker nodes. This allows the system to adapt its capacity to varying
loads. The use of microservices also enhances Modifiability (Maintainability),
allowing parts of the system to be changed or adapted more easily. The
architecture's design for deployment across Cloud, Fog, and Edge tiers
demonstrates Adaptability.

Flexibility
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Performance Efficiency, particularly Time Behaviour, is addressed through
architectural patterns that promote responsiveness and throughput. Asynchronous
request handling via the API Gateway and message queuing (RabbitMQ) prevents
Performance/Efficiency | blocking and allows the system to handle incoming requests efficiently. Parallel
execution of Actions on worker nodes and load balancing via Nginx further enhance
throughput and response times underload. Distributing tasks across Cloud, Fog, and
Edge tiers implies optimizing Resource Utilization based on computational capacity.

Maintainability is supported by adopting a microservices architectural style and a
component-based design (Manager Service, Executors, Data Service, etc.). This
promotes Modularity, allowing components/microservices/actions to be developed,
deployed, and updated independently. The granularity of Actions, Microservices, and
Services allows for easier modification and evolution (Modifiability). The Monitor
Service aids Analysability by providing insights into node execution.
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loT Domain Industry 4.0

Maintainability

Architecture Layered

It is a layered software architecture for an loT system designed to monitor environmental conditions in industrial
settings. This system utilizes open-source software and hardware components. The architecture is structured
into four distinct layers, as shown in a deployment diagram (Figure 2, not provided here but referenced):
Perception Layer: Contains the sensing elements that gather environmental data.

Transport Layer: Handles the communication of data from the perception layer upwards.

Middleware Layer: Processes and potentially aggregates data received from the transport layer. Modifications in
the perception layer (e.g., adding sensors) necessitate changes here.

Application Layer: Provides end-user services and interfaces, consuming data processed by the middleware
layer.

The core design philosophy emphasizes a layered approach with loosely coupled components to manage the
complexity arising from diverse hardware and software elements in dynamic industrial environments.

Quality Requirements

Maintainability is achieved primarily through layered architecture, which promotes
loose coupling between components in different layers. This modular design makes
it easier to understand and modify (Modifiability) the system, as changes tend to
have a contained and predictable impact, propagating logically through the layers.

Maintainability

Security is addressed by focusing on verifying the identity of devices sending data
(Authenticity) and protecting the data during transmission and storage

Security (Confidentiality) via encryption. The architecture relies on the security mechanisms
provided by communication protocols (MQTT, CoAP) and requires securing the core
infrastructure components.

System Availability (a key aspect of Reliability) is supported by using a modular
architecture with clear component relationships. This design, combined with the
selection of open-source solutions (potentially offering community support and
transparency), aims to simplify maintenance, speed up repairs (Recoverability), and
reduce the likelihood or impact of failures (Fault Tolerance), thereby ensuring
continuous operation.

Reliability
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Scalability is explicitly addressed by designing the system to handle increases in
processing load, data storage, and the number of connected devices/users. This is
achieved through the inherent modularity of the layered architecture, allowing
individual layers or components to be scaled independently. Specific technology
choices and component designs across all layers were made with these scalability
dimensions in mind.
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loT Domain Healthcare

Architecture Layered Edge-Fog-Cloud Integrated

The architecture consists of several hardware and software components. Hardware includes a Body Area
Sensor Network (medical, activity, environment sensors) collecting patient data, Gateway devices (like mobile
phones) acting as initial fog nodes to forward data, FogBus Modules (Broker nodes for managing tasks and
security, Worker nodes like Raspberry Pis for performing computations), and Cloud Data Centers used for
overflow processing or handling large datasets.

Flexibility

Software components handle the data flow and analysis. Data undergoes filtering and pre-processing (including
dimensionality reduction with PCA/SPIHT and encryption with SVD) before being fed into a Deep Learning
Module. This module uses trained neural networks for diagnosis (predicting heart disease presence). An
Ensembling Module combines predictions from multiple models (using bagging/voting) running on different
worker nodes to improve accuracy. A Resource Manager within the Broker node, featuring a workload manager
and an arbitration module, handles job queuing and intelligently decides whether tasks should be processed by
the Broker itself, a Fog Worker node, or offloaded to the Cloud Data Center, aiming for load balancing and
optimal performance.

The system follows a Master-Slave topology within a Local Area Network (LAN), where the Broker node (Master)
controls Worker nodes (Slaves). Communication between edge/fog devices uses FogBus, while interaction with
the cloud uses Aneka. Gateways initiate requests to the Broker, which determines the processing location
(Broker, Worker, or Cloud via Broker). An Android application serves as the gateway interface, communicating
via HTTP REST APIs. The overall goal is to provide a robust, efficient, and accurate diagnostic service by
integrating loT, edge, fog, and cloud computing.

Quality Requirements

Accuracy in diagnosing heart disease is a primary functional goal, achieved by using
deep learning models and further enhanced by employing an ensemble method
(bagging/voting) that combines results from multiple models to improve the final
prediction (Functional Correctness).

Functional Suitability

FogBus Framework. The architecture aims for fast processing and low response
times by leveraging fog computing (processing closer to the source) and edge
resources. The Resource Manager's arbitration module dynamically allocates tasks
to Broker, Worker, or Cloud based on load and task requirements to optimize
performance. Cloud offloading handles heavy loads quickly, though potentially
increasing latency. Real-time analysis is a stated goal (Time Behaviour).

Performance Efficiency

FogBus Framework. A dedicated Security Management module within the Broker
(FogBus Broker) node is responsible for securing communication channels and
Security protecting data integrity against unauthorized access or tampering. Data is also
encrypted during pre-processing (using Singular Value Decomposition (SVD) for
encryption) (Integrity and Confidentiality).
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loT Domain Industry 4.0
Architecture Industrial Internet of Things (lloT)
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A layered software architecture for Industrial Internet of Things (1loT) deployment, specifically designed to
address the challenges of integrating diverse industrial fieldbuses, handling real-time constraints, and leveraging
the benefits of fog/edge computing. The architecture prioritizes modularity, scalability, and interoperability,
acknowledging the machine-centric nature of lloT compared to the consumer-focused loT.

Key Architectural Features:

Layered Structure: The architecture is organized into four distinct layers:

a. Sensing/Things Layer: This layer encompasses the physical devices, sensors, actuators, and PLCs
connected to various industrial fieldbuses (e.g., CANOpen, Modbus, Profibus). It focuses on the hardware
aspect of fieldbus connections. Software modules at the upper level handle the configuration of fieldbuses and
connected devices.

b. Data Provider Layer: This layer acts as an intermediary, acquiring data from fieldbuses, storing it in buffers,
and transmitting it to the fog layer. It also handles sending data back to fieldbuses. The layer includes drivers for
each supported fieldbus, abstracting the specific details of each network and creating a unified address space.
This contributes significantly to interoperability. Real-time requirements are addressed by leveraging SoCs with
specialized co-processors for time-critical communications.

c. Fog/Edge Computing Layer: This is a crucial layer that enables local data processing, analysis, and
interaction between "things." It implements a publisher-subscriber paradigm, where "things" (physical and
virtual) publish their values, and other "things" subscribe to them. Virtual things can process data from physical
things, enabling complex local logic and decision-making. The Data Distribution Service (DDS) middleware for
real-time systems is proposed for communication between the things to ensure interoperability between the lloT
systems.

d. Applications/Services Layer: This layer provides the platform for developing industry-specific applications,
such as remote monitoring and control (SCADA), HMIs, report generation, and data visualization. These
applications can subscribe to data from the fog layer and publish commands back to the industrial environment.
Web servers can be hosted on the fog nodes to visualise data and provide remote configuration.

Fog/Edge/Gateway Nodes: The architecture emphasizes the use of fog/edge/gateway nodes, which combine
the data provider and fog computing layers. These nodes are implemented on computing systems with sufficient
processing power and peripherals to connect to industrial networks. The nodes can connect to multiple
fieldbuses, enabling data aggregation and distributed processing close to the source.

Fieldbus Integration: A core goal is to seamlessly integrate various fieldbuses. The data provider layer's drivers
and the unified address space abstraction hide the complexities of different fieldbus protocols. The architecture
supports "plug and play" integration of fieldbuses through device description languages.

Real-Time Capabilities: The architecture is designed to address the real-time requirements of industrial
environments. This is achieved through:

a. SoC-based Implementation: Utilizing SoCs with specialized co-processors for real-time communication with
fieldbuses, separating real-time tasks from less critical operations.

b. DDS Middleware: The use of DDS middleware with its quality of service (QoS) levels to guarantee data
availability, delivery, and timeliness.

c. Prioritization: Implementing acquisition cycles where data is updated periodically and prioritized based on
criticality.

Virtual Environment: The architecture incorporates a virtual environment where "things" (physical and virtual)
can interact and exchange data. This allows for simulation, testing, and advanced control strategies.

Security: Security is addressed at multiple layers. Fieldbus security relies on existing mechanisms and restricted
physical access. Higher layers implement security measures like encryption of configuration files, restricted
remote access, and OS security updates. The DDS protocol with the latest security specifications provides
authentication, access control, logging, data tagging, cryptography, and certificates.
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Quality Requirements

Data Distribution Service (DDS) with Publish-Subscribe provides the core
Compatibility communication layer. It enables loosely coupled communication (Interoperability)
between "things," allowing them to exchange information without direct connections.

"Things" communicate by publishing data and subscribing to data, rather than being
tightly coupled through direct point-to-point connections. This decoupling allows new
Flexibility "things" to be added to the system, or existing "things" to change their data sources,
without requiring modifications to other components. The architecture is said to be
versatile, being able to be used in a wide range of industrial applications.

DDS leverages its Quality of Service (QoS) policies to guarantee specific delivery
characteristics for data. These QoS policies allow developers to fine-tune how data
is transmitted, ensuring that critical information arrives on time and with the required
level of reliability (Time behaviour and Resource Utilization).

Performance/Efficiency

DDS Security: Employs the latest DDS Security Specification, offering
comprehensive security features:

Authentication: Verifying the identity of communicating entities to prevent
impersonation.

Access Control: Enforcing policies to restrict access to data and services based on
user roles and permissions.

Security Logging: Auditing system events to detect and investigate security breaches.

Data Tagging: Assigning security labels to data to control its dissemination and
usage.

Cryptography: Using encryption and digital signatures to protect the confidentiality
and integrity of data in transit and at rest.

Certificates: Leveraging digital certificates for secure authentication and key

exchange.
[KBRef-34] ‘

loT Domain Healthcare

Architecture Secure NDN-Edge Healthcare

The SHNIE (Secure Healthcare data communication framework integrating NDN-based IoT with Edge cloud)
architecture aims to provide secure and efficient medical data delivery for healthcare loT systems, specifically
addressing latency, cost, and the resource limitations of 0T devices. It employs a hierarchical, three-layer
structure (Patient, Edge Cloud, User) integrating loT device clustering, Edge computing, and Named Data
Networking (NDN) principles.

Quality Requirements
Security is a primary focus, implemented through multiple Named Data Networking
(NDN)-adapted strategies. Confidentiality is achieved by using hash names
(ciphertexts) within NDN's FIB and PIT tables and transmitting ciphertexts of names,
provider IDs, and the medical data itself, preventing disclosure even if traffic is
intercepted (addressing eavesdropping).
Integrity and Authenticity are addressed using digital signatures on data packets to

Security
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prevent tampering (false data) and ensure data originates from a legitimate source
and is retrieved by authorized users (preventing illegal acquisition/spoofing).

Performance efficiency is a key goal, addressed by leveraging Named Data
Networking (NDN) features and edge computing (Time Behaviour and Resource
Utilization).

Latency and cost are reduced through:

1) NDN's in-network caching implemented on edge devices, bringing data closer to
Performance/Efficiency | users;

2) NDN's request aggregation, allowing multiple users requesting the same data to
be served via a single retrieval process, reducing redundant traffic and server load;
3) Utilizing edge devices for caching overcomes the storage/computation resource
limitations of loT devices. Custom caching and delivery algorithms further optimize

this.
[KBRef-35]
loT Domain Smart City
Architecture Blockchain-enabled

This proposed architecture aims to enhance security and reduce energy consumption in loT networks by
integrating blockchain technology with Software Defined Networking (SDN) in a clustered structure.

Key Components & Concepts:

Clustered SDN Architecture (SDN Domains): The network is divided into clusters called SDN domains, each
managed by an SDN controller acting as a cluster head. This structure improves efficiency in large networks.

Blockchain Integration: SDN controllers are interconnected through a peer-to-peer (P2P) network utilizing
blockchain technology for secure communication.

Public Blockchain: A public blockchain connects the SDN controllers (cluster heads). Adding a new SDN
controller (and its associated loT devices) to the network is treated like adding a new block to the chain. This
provides a shared history of transactions between controllers. The use of a clustered architecture mitigates the
computational power requirements associated with public blockchains. A Proof-of-Work (POW) mechanism is
not needed to add new controllers due to SDN controller managing authentication

Private Blockchain: A private blockchain is implemented within each SDN domain, between the SDN controller
and its connected loT devices. This manages transactions and enforces energy efficiency policies for loT
devices. Access to the private blockchain requires invitation and authentication.

Secure Access Control: The public and private blockchains are used to provide secure access control for loT
devices and their data. Each loT device has a unique public and private key pair after being authenticated by
the controller of its initial SDN domain. This key pair is used for secure communications.

IoT Device Migration: lIoT devices can migrate between SDN domains to avoid excessive energy consumption
or delays. The process involves requesting membership from the new cluster head, which verifies the device's
identity using the public blockchain and retrieves the device's public key from its previous cluster head. The
transation is registered in the public blockchain

Decentralization and Security: The distributed, P2P nature of the blockchain enhances security by eliminating
single points of failure (SPOFs). The architecture creates a secure and comparable design in the proposed
architecture. The P2P connection among the IoT devices can be observed inside the SDN domain.
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Benefits Highlighted:

Enhanced security for communication between loT devices.

Reduced energy consumption among loT devices.

Improved network efficiency through the cluster structure.

Elimination of single points of failure due to the decentralized nature of the blockchain.
Secure access control for IoT devices and data.

In summary, the proposed architecture combines the centralized control and flexibility of SDN with the security
and decentralization of blockchain to create a more robust, efficient, and secure 10T network. The use of both
public and private blockchains addresses different security and management needs within the network.

This architecture prioritizes security and energy efficiency in loT environments by leveraging SDN and
blockchain technology. It tackles the energy-intensive nature of traditional blockchains by replacing Proof-of-
Work (PoW) with a lightweight, distributed trust-based authentication system managed by SDN controllers.

Security is enhanced through:

Distributed Trust: Validating blocks using the SDN controller and its distributed trust algorithm, ensuring data
integrity without heavy computation.

Blacklisting: Malicious or selfish nodes are identified and blacklisted in a public blockchain, preventing them
from re-registering in other domains.

Public/Private Key Infrastructure: Secure communication is ensured through the use of public and private key
pairs for loT devices.

Energy efficiency is achieved through:

PoW Elimination: Replacing PoW with distributed trust authentication drastically reduces energy consumption
associated with block creation.

Energy-Aware Routing: The routing protocol considers the energy levels of 10T devices, optimizing data transfer
paths to minimize energy expenditure.

SDN Controller Management: The SDN controller monitors device energy levels and can facilitate device
migration to other domains when energy is low, further extending network lifetime.

In essence, the architecture creates a secure loT environment while significantly reducing energy consumption
by replacing computationally expensive tasks with efficient and secure authentication methods and energy-
aware network management.

Quality Requirements

Distributed Trust: Validating blocks using the SDN controller and its distributed trust
algorithm, ensuring data integrity without heavy computation.

Blacklisting: Malicious or selfish nodes are identified and blacklisted in a public

Security blockchain, preventing them from re-registering in other domains.

Public/Private Key Infrastructure: Secure communication is ensured through the use
of public and private key pairs for loT devices.
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PoW Elimination: Replacing PoW with distributed trust authentication drastically
reduces energy consumption associated with block creation.

Energy-Aware Routing: The routing protocol considers the energy levels of loT
Performance/Efficiency | devices, optimizing data transfer paths to minimize energy expenditure.

SDN Controller Management: The SDN controller monitors device energy levels
and can facilitate device migration to other domains when energy is low, further
extending network lifetime.

[KBRef-36]

loT Domain Generic

Architecture Layered Blockchain-Based SDN

This architecture proposes a secure routing solution for multi-controller SDN-enabled loT networks,
addressing privacy concerns associated with sharing detailed network information. Instead of precise topologies,
controllers generate and share abstract topologies, which hide internal network details using virtual links. These

abstract topologies are stored securely and immutably on a Blockchain managed via a smart contract.

The architecture consists of four layers: Forwarding, Control, Application, and Blockchain. The Control
Layer uses LLDP (with extensions) for link discovery and configures flow tables in the Forwarding Layer. The
Application Layer is responsible for generating the abstract topology from the precise view and interacting with

the blockchain.

A key feature is the verification process for submitted abstract topologies. When a controller uploads its
topology via gRPC to the smart contract, other controllers in the Application Layer validate it by sending ICMP
probing packets to check the existence of advertised edge switches/links. These controllers then vote via the
smart contract. Only if a majority confirms the topology's correctness is it permanently stored on the blockchain;

otherwise, it's discarded.

This validation process feeds into a Reputation Mechanism. Controllers calculate a local reputation for
peers based on the correctness of their submissions (using Bayesian estimation). These local reputations are sent
to the smart contract, which calculates a global reputation (a weighted mean, considering time decay) stored on

the blockchain.

When routing is needed, controllers retrieve the verified abstract topologies and global reputations from
the blockchain. They compute paths that are not only shortest (under constraints) but also reliable, avoiding
domains managed by controllers with low reputations. This ensures secure and trustworthy routing across multiple

SDN domains while preserving network privacy.

Quality Requirements

Privacy/Confidentiality is achieved by using abstract topologies instead of

Security precise ones, hiding internal network structure. Integrity of the stored topology

information is ensured by the immutable nature of the Blockchain and the
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verification/voting mechanism that filters out mistaken data before final storage.
Secure routing and prevention of data leakage/packet loss are achieved by
computing paths using only these verified, trustworthy topologies and by avoiding

domains with low reputations (indicating potential maliciousness or unreliability).

Reliability is achieved by ensuring the correctness and trustworthiness of the
topology information used for routing. A verification process (ICMP probing + majority
voting via smart contract) filters out incorrect ("mistaken") topologies, enhancing
Reliability accuracy. The Reputation Mechanism quantifies the historical reliability of each
controller's shared information using Bayesian estimation locally and a weighted,
time-decayed global score on the blockchain. Path computation explicitly uses this

reputation data to select reliable paths.

[KBRef-37]

loT Domain Smart City

Architecture loT Fog Computing Based

A layered fog computing architecture designed to balance data processing efficiency, low latency, and user
privacy in the Internet of Things (loT).

Key Features of the Architecture:

Fog Node Core Network: Uses a Software Defined Network (SDN) to manage fog nodes, separating control and
data planes for flexible resource allocation and network virtualization. This is connected via high-capacity fibers
to base stations/routing devices.

Cloud Integration: Fog nodes connect to the cloud, allowing for leveraging cloud computing power when local
fog nodes are insufficient. Tradeoff: Cloud processing introduces communication delay.

Privacy-Preserving Data Handling: Addresses privacy concerns by introducing proxy virtual processors (VMs)
connected to each type of user's 10T devices. These proxy VMs:

Classify and analyze data before transmitting it further.
Remove personal privacy information before forwarding the data to application VMs.

Provide semantic models to allow application VMs to access needed information without sensitive data.

Dynamic Deployment of Proxy VMs: Proxy VMs can be statically deployed near fog nodes for stationary loT
devices (e.g., smart home sensors). For mobile devices (e.g., smartphones), proxy VMs can be partially static
and partially mobile to minimize network load and latency.

Application VM Deployment Schemes: Two options:

Local Deployment: Application VMs deployed within fog nodes process data from local proxy VMs (e.g., parking
applications).
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Remote Deployment: Application VMs deployed in the cloud process data from proxy VMs across multiple fog
nodes when a broader view is needed (e.g., intelligent transportation).

Example Application: Intelligent Video Surveillance: Employs background modeling and convolutional neural
networks to detect and analyze behaviors, raising alarms when necessary. This is balanced with privacy
protection.

Core Goal:

The primary goal is to provide a flexible and privacy-aware fog computing architecture that can efficiently
process loT data while minimizing latency and protecting user privacy by removing sensitive information at the
edge of the network. The SDN controlled network and the dynamic and strategic deployment of virtual
processors contribute to this goal.

Quality Requirements

Software Defined Networking (SDN):

Dynamic Resource Allocation: SDN allows for flexible allocation of network
resources on demand. As the number of 10T devices or the volume of data
increases, the SDN controller can dynamically adjust network bandwidth, routing

paths, and other parameters to accommodate the increased load.
Flexibility

Centralized Control: The centralized controller in SDN simplifies network
management and allows for efficient scaling of the network infrastructure.

Network Virtualization: SDN enables network virtualization, which allows multiple
virtual networks to coexist on the same physical infrastructure. This can improve
resource utilization and scalability (Flexibility).

The architecture optimizes performance by distributing processing resources closer
to the data source (Resource Utilization), employing high-speed network
Performance/Efficiency | connections, utilizing SDN for intelligent network management, performing data
pre-processing at the edge, and strategically deploying application VMs based on
the application's latency requirements.

Proxy Virtual Processors (VMs) are a core component of this architecture, designed
to address privacy (Confidentiality) concerns and improve efficiency in loT data
processing.

Privacy Protection: Their primary goal is to remove personally identifiable
information (PIl) from data before it's transmitted to application VMs. This is crucial
for protecting user privacy in a world where 10T devices are constantly collecting
personal data.

Security

Data Classification and Analysis: They classify incoming data from loT devices
based on its type and perform initial analysis or pre-processing. This reduces the
burden on application VMs and allows them to focus on specific tasks.
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Semantic Modeling: They provide semantic models that allow application VMs to
access the information they need without exposing them to raw, sensitive data. In
essence, they translate raw data into a more abstract and privacy-preserving
representation.
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Appendix C — Feasibility Study Protocol

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
PROGRAMA DE ENGENHARIA DE SISTEMAS DA COMPUTAGAO
ENGENHARIA DE SOFTWARE EXPERIMENTAL

1. IDENTIFICATION
Title: ArchloTect
Technical Area: Software Engineering

Authors: Fernando Novaes Ribeiro da Silva, Bruno Pedraga de Souza, and Guilherme
Horta Travassos

Affiliation: COPPE/UFRJ
Local: Rio de Janeiro

Date: July 14 to 25

2. CHARACTERIZATION

An applied feasibility study will be carried out in a tool to support decision making on the
architecture of an loT software system.

Type: Feasibility study.

Domain: Experimental Software Engineering — Software System Architecture.
Language: Portuguese (Brazilian).

Partners: Federal University of Rio de Janeiro — PESC/COPPE.

Expected Execution: Second Half of 2025

Glossary of Terms:

Software Engineering (ES);

Internet of Things (loT);

3. INTRODUCTION

Software engineering faces a growing challenge with the rise of Internet of Things (loT)
systems. These new systems, characterized by their autonomy and complex interaction
between software, hardware, and the physical world, make the early stages of
development, such as requirements analysis and architecture definition, more critical than
ever. An inadequate architectural decision in this heterogeneous environment can lead
to catastrophic failures.

To mitigate these risks and provide structured support to professionals, the ArchloTect
tool was designed to guide decision-making about the architecture of loT software
systems. The feasibility of this proposal will be investigated through a study using the
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Technology Acceptance Model (TAM). Proposed by Davis (1989), the TAM model will
allow us to assess whether ArchloTect is perceived as useful and easy to use, which are
determining factors for its acceptance and practical success.

4. DEFINITION OF THE EXPERIMENTAL STUDY

Object of Study: ArchloTect.

Global Objective: This work aims to conduct a feasibility study with graduate students
in software engineering and professionals in the field to verify whether the ArchloTect tool
is capable of supporting architectural decision-making in loT systems.

Specific Objectives

e Analyze: ArchloTect

o for the purpose of: characterizing

o with respect to: the feasibility of ArchloTect, observed in terms of being
considered useful, easy to use, and feasible.
From the point of view of: of researchers in ES.
In the Context of: Use of the ArchloTect tool to solve a proposed loT scenario
for architectural decision with graduate students in software engineering and
professionals in the area.

Questions and Metrics
Is the ArchloTect tool interface intuitive and easy to use?

This question aims to verify, in the context of designing an loT software system
architecture, if the tool is easy to use.

Am | satisfied with the overall quality of the recommendations provided by the
ArchloTect tool?

This question aims to verify, in the context of designing an loT software system
architecture, if the recommendations based on user needs are reliable.

Did the ArchloTect tool meet my expectations for assisting with architectural
decisions?

This question aims to verify, in the context of designing an loT software system
architecture, if the tool is considered useful for making architectural decisions.

Should the ArchloTect tool be recommended to other professionals who work with
loT software system architectures?

This question aims to verify, in the context of designing an loT software system
architecture, if the use of the tool is viable for professionals in the field.

5. PLANNING

Variable Selection

Dependent variables: user experience.

Independent variables: area of expertise and experience of the participants in the area.

We did not define a hypothesis, since this study had a small sample. Therefore, the
application of statistical tests would not be adequate.

Selection of Participants

Participant Selection Criteria: convenience sample.
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Required Experience: students are taking the Software Engineering course or are
professionals in the technology area.

Probabilistic Sampling Techniques: not applicable.
Non-Probabilistic Sampling Techniques: not applicable.
Resources:

Software: ArchloTect.

Hardware: Computer with internet access.

Questionnaires: a questionnaire for qualitative data collection (after having used the
tool), a term of agreement in study participation, and characterization of the
participants.

Experiment Design
Objects: scenario-based architectural decision.
Measurements: user experience.
o Techniques: Use of the tool for architectural decision making.
Instrumentation

Description of Instrumentation: In this part of the research, the questions were
prepared for the participants to answer the questionnaire. The following form will be used
to obtain/collect data: a questionnaire after using the tool.

Support for Quantitative Analysis: will not be necessary.
Support for Qualitative Analysis: ad hoc analysis.
Observation Criteria: not applicable.

Artifacts (Questionnaires, Procedures, etc.): questionnaire.

Analysis Engines

Criteria for Elimination of Outliers: not applicable.

6. TRAINING

Definition of Training and Procedures
Applicators: by the researcher.

Participants: graduate students and IT professionals.

Procedures: classes on loT, software engineering, explanatory video of the use of the
tool, and user manual.

7. ENFORCEMENT PROCEDURES

Definition of Execution of the Experimental Study: A feasibility study will be carried
out with graduate students of software engineering courses. An explanatory video is
delivered to prepare users for the tool's use. After that, the evaluation questionnaire is
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made available with three scenarios for architectural decision making, and after using the
tool based on the chosen scenario, the questionnaire is filled out.

Artifacts (Instructions, Documents, etc):

Informed Consent Form: for the support and anonymity of students.
Characterization of participants: to capture the professional experience of students.

Questionnaire: to collect feedback from participants after using the ArchloTect tool.

8. EVALUATION OF THE PLAN

Objectives: reviewed by authors.

Participants: researchers.

Execution Procedures: 15 days (following this execution plan);
Artifacts Used: ArchloTect tool.

Artifacts Generated (Lessons Learned, Suggestions for Modification of the Plan):
questionnaire of participants' perception after using the tool;

9. COST PLANNING

Costs of the Experimental Study

Planning Costs: not applicable.

Plan itself: not applicable.

Instrumentation: not applicable.

Training Material: explanatory video.

Plan Evaluation: not applicable.

Execution Costs

Displacements: not applicable.

Training: explanatory video of the use of the tool.
Human Resources: graduate students and researchers.
Material Resources: forms, computers, software.
Analysis Costs: not applicable.

Packaging Costs: not applicable.
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Appendix D - Term of Consent

Dear Sir/Madam,

| declare that | am over 18 years of age and | agree to participate in this
study conducted by the Software Engineering team at the Systems and Computer
Engineering Program (PESC/COPPE). This study aims to analyze the use of a
computational tool to support decision-making in defining software architectures
specific to loT software systems. The results of the study will contribute to
understanding how to improve the quality of loT software systems, as well as the
technologies, specifically software architecture, that can be utilized. Your
participation is not mandatory; however, if you wish to participate, please read

the terms available in this document and express your agreement.
1) Procedure

A computational support tool will be used to assist in architectural decision-
making for loT software systems. The focus of observation is the computational
tool, not the participant. The participant will never be identified in the data. After
collecting the study data, any reference to the participant will be removed and will
not be used at any point during the analysis or presentation of the results.
Therefore, your agreement to participate in this study implies your permission for
the researchers to use your profile characterization data, the study results, and

your responses to questions about the computational support tool.
2) Handling of Potential Risks and Discomforts

During data collection, your privacy and anonymity are guaranteed. The
data collected during this study is intended strictly for research activities related
to the techniques being studied. The entire procedure is in full compliance with
the Lei Geral de Protegdo dos Dados (LGPD).

3) Benefits and Costs

This study will contribute important results to research in the general areas
of the Internet of Things (loT), Software Engineering, and Software Architecture.

You will not incur any expense or burden from your participation in the study, nor
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will you receive any kind of reimbursement or gratification for your participation,
other than the knowledge acquired in the application of the tool and the specific

software architectures of lIoT software systems.
4) Confidentiality of the Research

All information collected in this study is confidential and anonymous,

except in cases where explicit authorization is requested for such a purpose.
5) Participation

| understand that | am participating voluntarily, solely to contribute to the
advancement and development of software technology. You have the right to

decline participation or to withdraw from this study at any time, without penalty.

By proceeding with this form, you are agreeing to the presented consent

form and agree to participate voluntarily in this research.

The researchers responsible for the study can provide any clarification
about it, as well as answer any questions. Please contact them at the following

emails:
Researchers:

Fernando Novaes Ribeiro da Silva (COPPE/UFRJ):

fernandonrs@cos.ufrj.br
Bruno Pedraca de Souza (COPPE/UFRJ): bpsouza@cos.ufrj.br
Advisor:
Guilherme Horta Travassos (COPPE/UFRJ): ght@cos.ufrj.br

6) Declaration of Consent

Do you agree to participate in the evaluation and accept the terms cited

above?

[ ]Yes
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Appendix E — Participant Profile

Dear Participant,

This form is designed to assess your level of familiarity with various
aspects of software architecture and loT.

All data collected will be handled with complete anonymity, and your
responses cannot be used to identify you.

1 - What is your area of expertise in Software Projects?
() Software Architect

(
(

() Infrastructure
() Others
2 - How many years of experience do you have in this role?

Software Engineer
Team Leader

N~ N N N

3 - Knowledge of loT software systems. Regarding your level of
knowledge about loT software systems, please mark the alternative that
best applies to your answer.

() None

() I have a basic understanding of IoT software systems from readings
and lectures

() I have studied loT software systems in formal courses.

() I have hands-on experience with loT software systems through projects
in university and/or industry.

4 - Knowledge of software architecture. In relation to your level of
knowledge about software architecture, mark the alternative that best

Completely | am an
inknown 0102003004005060708()9010 o

applies to your answer.
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Appendix F — Post-Inspection Questionnaire

Post-Inspection Questionnaire of the ArchloTect Application
Using the tool: ArchloTect

A new software system for the Internet of Things (loT) needs to be

designed, and you, as a software architect or engineer, are responsible.

Every decision you make now — about the communication protocol, the
security standard, the data architecture — will have a lasting impact on the
project's performance, cost, and success. Information is scattered, technology
evolves rapidly, and the pressure to make an appropriate choice for the

software system's architecture is immense.

It is at this point that the tool should be used as a specialized assistant

that can help, or not, in decision-making.

Your task is to use the tool to identify an architectural solution for
an loT software system. Therefore, choose 1 (one) of the scenarios you feel
most comfortable with below and provide a possible architectural solution for

the loT software system.
Scenarios:
Scenario 1 - "Greenfield” Project - Smart Cities

Context: You have been tasked with initiating a new project related to an
energy consumption monitoring system for smart homes ("Smart City Energy
Monitoring"). The initial requirements are vague, but management expects the
system to be scalable (Flexibility) (to support thousands of homes in the future)
and reliable (Reliability). You need to propose an initial architecture and don't

know where to start.
Scenario 2 - "SmartTruck” Project - Logistics Fleets

Context: Your team is developing a logistics fleet management system.
They need real-time communication (Performance/Efficiency) to track vehicles.
A senior developer suggested using WebSockets, as the team already has
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experience with it. Another suggested MQTT, which they heard is the "standard
for loT." You need to make a decision based on evidence and justify the choice

to the team and the project manager.
Scenario 3 - "Wearable" Project - Healthcare

Context: You are a project manager with a technical background. Your
team is developing a wearable device for health monitoring. Data privacy
(Security) is the highest legal and ethical priority, followed by long-term system
maintainability (Maintainability). The team is undecided between a Monolithic

Layered architecture and a Microservices architecture.
Important Notice:
Please Read Before Proceeding

At this moment, your task is to use the ArchloTect tool to solve the

project scenario you have chosen.

We ask that you do not proceed to the evaluation form until you have

fully completed your analysis and made an architectural decision using the tool.

Your evaluation should reflect the complete usage experience, from

initial exploration to the formulation of a solution.

Only after completing your architectural project task, proceed to the

questions.

We appreciate your attention to this crucial detail for the validity of our

research.

Beginning of the Questionnaire to Evaluate the Use of ArchloTect: A
Tool to Support Decision-Making on the Architecture of an loT Software

System
Instructions:
Answer each question in the following sections by selecting an option from

0 (Strongly Disagree) to 10 (Strongly Agree).

135



Click Next for us to begin.

Before we proceed, please tell us which scenario you used for the tool

evaluation:
() Scenario 1 - "Greenfield" Project - Smart Cities
() Scenario 2 - "SmartTruck" Project - Logistics Fleets

() Scenario 3 - "Wearable" Project — Healthcare

1 - Comparative Evaluation: Knowledge Base vs. Al Assistant
Query modes for finding an architectural solution:

e Static Mode: Navigate through the hierarchical knowledge base

(Knowledge Base menu).

e Dynamic Mode: Interact with the Al assistant (Al Assistant

menu).

Based on your experience, which of the modes proved to be more

effective and efficient in supporting your decision-making?
() Hierarchical Knowledge Base
() Al Assistant
() One mode complements the other

2 - Justify your previous answer, considering factors such as time,

accuracy, and confidence in the result.

User Satisfaction:

User satisfaction is one of the main indicators of efficiency/effectiveness in
software, as it reflects how well the system meets the expectations and needs
of the end user. This assessment considers Ease of Use (Usability),
Suitability to User Needs, and Overall User Experience (UX).
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4 — The ArchloTect tool's interface is intuitive and easy to use.

Completely
Disagree

Completely

()102030)40)3()6()7()8()9()10 Agree

5 — | am satisfied with the overall quality of the recommendations provided
by the tool ArchloTect.

Completely
Disagree

Completely

()102030)40)3()6()7()8()9()10 Agree

6 - The tool ArchloTect met my expectations for helping with architectural

decisions.
Completely Completely
Disagree ()1020)3(0)4()5()6()7()8()9()10 Agree

7 - This tool should be recommended to other professionals working with

loT software system architectures.

Completely
Disagree

Completely

()102030)40)3()6()7()8()9()10 Agree

Open Questions:

8 - What would you suggest to make the tool more useful in the context of

loT systems?

9 - Was there any aspect in which the tool did not meet your needs? If so,

please explain.
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