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A dignidade intrinseca de cada
homem e de cada mulher deve
ser o critério fundamental na

avaliacao das tecnologias
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Modelos de aprendizado de maquina extraem padroes de grandes volumes de da-
dos. Quando estes refletem desigualdades historicas ou sociais, tendem a reproduzi-
las em suas previsoes. Esse risco é especialmente relevante em dominios sensiveis
como justiga criminal, satude, emprego e financas, nos quais decisoes algoritmicas
podem impactar diretamente a vida das pessoas.

Embora existam diversas técnicas para mitigar injustigas, o grau adequado de
intervencao ainda é pouco explorado, sobretudo porque envolve equilibrar justiga e
desempenho preditivo. Esta dissertacao investiga como algoritmos tradicionais se
comportam sob dados enviesados sem mecanismos de mitigagao, por meio de uma
analise sistematica de seu desempenho em condigoes progressivamente injustas.

Para este fim, foi proposta a metodologia Systematic Label Flipping for Fairness
Stress Testing, que insere viés controlado nos dados de treinamento. Essa abordagem
permite avaliar a robustez de classificadores e observar, de forma gradual, como
métricas de desempenho e justica evoluem a medida que o viés aumenta.

Foram analisados os modelos Arvore de Decisao, Floresta Aleatoria, Regressao
Logistica e Rede Neural. Em geral, os resultados foram semelhantes, com excegao
da Regressao Logistica, que no dataset COMPAS sofreu maior degradacgao de de-
sempenho e aumento de injustica. As Arvores de Decisdo mostraram-se ligeiramente
mais estaveis, mas as diferencas entre algoritmos foram discretas.

As contribui¢oes desta dissertacao sao duas: a proposi¢ao de uma metodologia
reprodutivel de stress testing de justica e a apresentacao de evidéncias empiricas

sobre a robustez de modelos tradicionais frente a cenérios enviesados.
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Machine learning models extract patterns from large volumes of data. When
such data reflect historical or social inequalities, algorithms tend to reproduce them
in their predictions. This risk is particularly relevant in sensitive domains such as
criminal justice, healthcare, employment, and finance, where algorithmic decisions
can directly affect people’s lives.

Although several techniques exist to mitigate unfairness, the appropriate de-
gree of intervention remains underexplored, especially because it requires balancing
fairness and predictive performance. This dissertation investigates how traditional
algorithms behave when exposed to biased data without mitigation mechanisms,
through a systematic analysis of their performance under progressively unfair con-
ditions.

To this end, the Systematic Label Flipping for Fairness Stress Testing method-
ology was proposed, which introduces controlled bias into the training data. This
approach makes it possible to assess the robustness of classifiers and to gradually
observe how performance and fairness metrics evolve as data bias increases.

The models analyzed were Decision Tree, Random Forest, Logistic Regression,
and Neural Network. Overall, results were similar, with the main exception being
Logistic Regression, which on the COMPAS dataset suffered a greater drop in per-
formance accompanied by increased unfairness. Decision Trees proved slightly more
stable, but overall the differences across algorithms were modest.

The contributions of this dissertation are twofold: the proposal of a reproducible
methodology for fairness stress testing and the presentation of empirical evidence

on the robustness of traditional models when subjected to biased scenarios.
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Chapter 1

Introduction

1.1 Contextualization

Over the last two decades, Machine Learning (ML) has evolved from a set of exper-
imental techniques into a consolidated component of decision-making systems in so-
ciety. Predictive algorithms are now routinely used in critical domains such as credit
evaluation, healthcare diagnosis, recruitment processes, marketing campaigns, and
criminal justice. The diffusion of these technologies has generated unprecedented
opportunities, enabling automation at scale and offering the promise of decisions
that are more data-driven, consistent, and efficient. However, alongside these ad-
vances, serious concerns have emerged regarding the fairness and social consequences
of automated decision systems.

The risk of reproducing and amplifying structural inequalities that exist in the
data used to train ML models has become a central issue. Algorithms, when trained
on biased data, may reinforce discriminatory patterns against certain demographic
groups, particularly those historically marginalized. High-profile examples, such
as gender bias in hiring algorithms or racial disparities in criminal risk assessment
systems, have exposed the limitations of relying solely on traditional performance
measures. These cases have drawn the attention of both the academic community
and policymakers, motivating the creation of regulations and technical standards
for responsible artificial intelligence.

Fairness in ML has emerged as a research field of increasing relevance, driven by
the development of fairness metrics, mitigation techniques, and evaluation strategies.
Despite these advances, how to rigorously assess the robustness of predictive models
in unfair settings is still an open research question. While many studies emphasize
interventions aimed at making models fairer, few works investigate how traditional
ML algorithms behave when trained on biased data, and consequently what degree of

intervention is actually required. Addressing this gap is crucial for understanding the



inherent vulnerabilities of models and clarifying the degree of fairness intervention
they actually demand.

Stress testing has proven to be an effective methodology in several areas of engi-
neering and finance, where systems are subjected to adverse or extreme conditions
to evaluate their resilience. Applying this idea to fairness in ML offers a promising
way to move beyond static evaluation. By deliberately exposing algorithms to con-
trolled unfairness, it becomes possible to characterize how performance and fairness
behave under adverse scenarios. This approach aligns with the broader objective of
responsible artificial intelligence: not only to evaluate whether a model appears fair
in a given dataset, but also to assess whether it can remain fair when the training
environment changes or deteriorates.

This dissertation is situated precisely in this context. Its main objective is to
investigate the robustness of classification algorithms under unfairness in training
data, through the design and implementation of a systematic methodology for fair-
ness stress testing. By simulating controlled and progressive distortions in datasets,
the study aims to provide a deeper understanding of the trade-offs between predictive
performance and fairness and to contribute to the development of more transparent

and trustworthy ML systems.

1.2 Objectives

The general objective of this dissertation is to investigate how ML classifiers respond
to increasing levels of unfairness deliberately introduced into training data. To
achieve this goal, we propose and apply a methodological framework called System-
atic Label Flipping for Fairness Stress Testing. This approach introduces unfairness
into datasets in a controlled and reproducible way through multiple label-flipping
strategies, enabling a systematic analysis of classifier robustness under progressively
adverse conditions.

Although fairness in machine learning has been extensively studied, no prior
work has been found in the literature that systematically investigates how different
classifiers respond to progressively induced label unfairness. This absence of direct
analyses on systematically induced unfair conditions highlights a research gap that
this dissertation aims to address, providing new empirical insights into the mecha-
nisms through which unfairness affects model robustness.

To reach this objective, a complete experimental framework was designed and
implemented, integrating all stages of the process: preprocessing of raw data, en-
coding and scaling of features, division into cross-validation folds, model training,
hyperparameter optimization, bias injection, evaluation, and visualization of results.

The framework is modular, reproducible, and extensible, allowing the methodology



to be reused and extended in future studies.
Within this framework, different label-flipping strategies are compared to deter-
mine which forms of bias injection are most effective in exposing classifier robustness

or fragility. The evaluation combines conventional performance metrics (Accuracy

(Acc]), F1 Score (F1)), Mathews Correlation Coefficient (MCC])) with fairness met-

rics (Statistical Parity (Stat. Parity]), Equal Opportunity (Eq. Opp.)), Equalized
Odds (Eq. Odds))), providing a more comprehensive characterization of models and

highlighting that strong predictive performance does not necessarily guarantee eq-
uitable treatment across groups.

The methodology is applied across heterogeneous datasets from different domains
and with distinct sensitive attributes, namely Bank Marketing, Adult Income, and
COMPAS Recidivism. These datasets were selected for their relevance in the fairness
literature and their diversity, which enables the study of how bias and unfairness
manifest in different contexts.

By integrating the experimental framework, the comparison of label-flipping
strategies, the joint use of performance and fairness metrics, and the application
to multiple datasets, this dissertation aims to generate empirical evidence and crit-
ical analysis on the robustness of classifiers to unfairness. The study seeks to reveal
which models degrade more gracefully, which fail abruptly, and under what condi-
tions the trade-off between performance and fairness becomes most severe. In doing
so, it offers both methodological and empirical contributions to academic research

and to the practical development of fairer ML systems.

1.3 Contributions

This dissertation makes contributions that are both methodological and empirical,
advancing the study of fairness in ML through the proposal of a novel stress testing
methodology, the evaluation of multiple strategies for injecting bias, the development
of a reproducible experimental framework, and the generation of empirical evidence
on classifier robustness.

From the methodological perspective, the main contribution is the design and
implementation of the Systematic Label Flipping for Fairness Stress Testing ap-
proach. This methodology allows datasets to be progressively manipulated in order
to simulate increasing levels of unfairness in a controlled and reproducible manner.
Unlike uncontrolled perturbations, the proposed framework establishes a systematic
process for introducing bias by flipping labels in specific subsets of the training data.
This makes it possible to subject classifiers to stress tests analogous to those widely
used in engineering and finance, but now specifically directed at the dimension of

fairness. The systematic nature of this procedure enriches the set of tools available



to researchers and practitioners seeking to probe the vulnerabilities of predictive
models when fairness is at risk.

A second methodological contribution lies in the evaluation of different strate-
gies for label flipping within the proposed framework. Instead of adopting a single
way of injecting bias, this dissertation investigates alternative strategies, such as
flipping the most confident instances, the least confident ones, or selecting examples
at random. These strategies produce different dynamics of unfairness and allow for
a deeper analysis of which mechanisms of bias injection are more effective in reveal-
ing model weaknesses. By comparing these strategies across models and datasets,
the dissertation contributes with insights on how the very process of bias induction
influences the manifestation of unfairness in classifiers.

A third contribution is the construction of a complete experimental framework
that integrates all stages of the process: dataset preprocessing, encoding and scal-
ing of features, division into cross-validation folds, model training, hyperparameter
optimization, bias injection, evaluation of metrics, and visualization of results. This
framework ensures reliable evaluation through cross-validation, includes systematic
hyperparameter optimization, and consolidates results into structured outputs con-
taining averages and standard deviations across folds and repetitions. Designed to
be modular and extensible, the framework allows new datasets, algorithms, and fair-
ness metrics to be incorporated with minimal adaptation, ensuring reproducibility
in line with best practices in the ML community.

From the empirical perspective, we contribute with a systematic evaluation of
four families of classifiers across three benchmark datasets. The results reveal consis-
tent patterns: Random Forest demonstrated greater robustness to progressive bias,
Decision Trees exhibited the highest sensitivity, and Logistic Regression and Neural
Networks presented intermediate behaviors. These findings expand the understand-
ing of how different algorithmic structures react when fairness is compromised in
the training data.

The dissertation adopts the joint analysis of performance and fairness metrics, a
standard approach in the fairness literature, in order to provide a more comprehen-
sive characterization of models. Within this framework, the study reveals that the
relationship between predictive performance and fairness is complex and context-
dependent: in some scenarios, fairness degrades faster than predictive performance,
while in others both decline simultaneously. Ultimately, this work strengthens the
empirical foundations of fairness research by providing both methodological rigor
and reproducible evidence, supporting future studies that aim to understand and

improve the resilience of ML models under unfair conditions.



1.4 Organization

This dissertation is organized into five chapters, in addition to appendices that con-
tain supplementary information. The structure was designed to guide the reader
from the general motivation and theoretical background to the methodological pro-
posal, experimental results, and final reflections.

Chapter 2 presents the theoretical foundations on fairness in ML. It discusses
how bias arises in data and models, introduces the main fairness definitions and
metrics proposed in the literature, and examines the trade-offs between fairness and
predictive performance. This chapter provides the conceptual basis that motivates
the stress testing methodology developed in the work.

Chapter 3 presents the methodological framework of this work. It motivates the
need for fairness stress testing, distinguishes label noise from unfairness, reviews re-
lated work on synthetic bias generation, and finally introduces the Systematic Label
Flipping for Fairness Stress Testing, the proposed method that progressively in-
jects structured bias through controlled label-flipping strategies to analyze classifier
robustness.

Chapter 4 presents the experimental methodology that guides this dissertation.
It begins by describing how the experiments were structured and the evaluation
criteria adopted. The chapter then analyzes the different strategies for bias intro-
duction within the Systematic Label Flipping for Fairness Stress Testing, comparing
their effectiveness. Finally, it evaluates the classifiers across the selected datasets,
examining their robustness to unfairness and the patterns that emerge as bias pro-
gressively increases.

Finally, Chapter 5 concludes the dissertation by summarizing the main results
and contributions, and by outlining directions for future work. It emphasizes the
methodological innovations, the empirical findings, and the practical implications of

the study, while also recognizing its limitations and suggesting possible extensions.



Chapter 2

Fairness in Machine Learning:

Concepts and Methodologies

The field of ML continues to expand rapidly across various important domains, call-
ing for careful attention to ethical, social and legal considerations. As its influence
grows, so do concerns about potential societal and ethical consequences, particu-
larly the risk of unfair outcomes that may exacerbate existing inequalities. These
concerns highlight the importance of designing and deploying systems with a clear
focus on fairness, ensuring that technological progress aligns with broader social
values and creates equitable opportunities for all. This chapter aims to demonstrate
the significance of fairness in ML through well-known examples, address the com-
plexities involved in defining fairness, outline key methodological components for
incorporating fairness into models, and explore the practical implications of doing

SO.

2.1 Importance of Fairness and It’s Societal Impact

Numerous real-world cases illustrate how fairness concerns manifest in practice. Sys-
tems intended to support decision-making have been shown to reproduce or amplify
existing inequalities, leading to discrimination Examples include biases in chat-
bots, immigration decision-making systems, and targeted advertising. OSOBA e
WELSER] (2017)) provide a comprehensive list of Artificial Intelligence (AI) applica-
tions that influence daily life, highlighting their potential biases, while HOWARD e
BORENSTEIN]| (2018) examines mechanisms through which these biases can emerge
in Al systems.

One notable example is Microsoft’s 2016 Tay chatbot, which quickly began to
post offensive and controversial tweets after being manipulated with content gen-

erated by malicious user groups (WOLF et al, 2017). Similarly, an algorithm de-



signed for Science, Technology, Engineering and Mathematics (STEM) job adver-
tisements displayed gender bias, treating women as more expensive targets (RAJI e
BUOLAMWINTI, 2022). Furthermore, facial recognition systems have shown lower
predictive performance in identifying individuals with darker skin tones (RAJI e
BUOLAMWINTI, 2022)).

Another prominent case is Correctional Offender Management Profiling for Al-
ternative Sanctions (COMPAS) (BARENSTEIN| [2019)). It is a software tool de-
veloped to predict recidivism, the likelihood that an offender commits crimes again
after release from prison. The algorithm exhibited racial bias, notably assigning
disproportionately higher false-positive rates to black offenders by incorrectly pre-
dicting that they would engage in commit further offenses, and also underperformed
compared to simpler methods such as logistic regression. Such applications, which
have profound implications for individual’s lives, underscore the critical need for
fairness and accountability in ML system design.

Fairness has increasingly become a focus of both researchers and society be-
cause of its impact in real-world decision-making systems. It is not only an ethical
imperative, but also a legal requirement in many jurisdictions (BAROCAS et al.,
2023). The European Union’s High-Level Expert Group on Artificial Intelligence
(HLEG, [2019) highlights fairness, non-discrimination and diversity as fundamental
principles for the design of Al systems that promote social well-being. Ensuring
that these systems are fair to all, regardless of physical or biological characteristics,
is crucial to avoid marginalizing vulnerable groups and exacerbating prejudice and
discrimination.

Traditional approaches focus primarily on optimizing predictive performance us-
ing metrics such as [F'T] and MCC| However, these metrics capture only tech-
nical performance and fail to account for the broader social consequences that may
arise in decision-making contexts. In cases involving socially sensitive attributes,
such as skin color or gender, this oversight can amplify biases. Attempts to address
this issue by excluding socially relevant attributes have proven insufficient due to the
presence of proxy variables (MEHRABI et al., [2022) and to what has been referred
to as the redlining effect (PEDRESHI et al., 2008). Companies and researchers
must ensure that deploying critical decision-making systems does not have adverse
social implications (CATON e HAAS, 2024), thus, a comprehensive understanding

of fairness in ML is essential for building equitable and responsible Al systems.

2.2 Defining Fairness: Concepts and Metrics

Fairness, in broad terms, refers to the equitable treatment of individuals, with par-

ticular attention to those who are marginalized, discriminated against, or disad-



vantaged (SAXENA et al., [2019). Long before the emergence of computer science,
disciplines such as philosophy and psychology have attempted to define fairness. De-
spite centuries of debate and its recognition as a fundamental moral principle, the
implementation of fairness in practical terms continues to face significant challenges.

From a philosophical perspective, the concept of fairness has long been associ-
ated with the classical understanding of justice, rooted in ancient law and further
developed within Christian philosophy by Saint Augustine. This concept was for-
mally defined by Saint Thomas Aquinas in the Summa Theologiae as the constant
and enduring will to give each individual their due (AQUINAS| 1274)). While this
definition provides a clear ethical foundation, the main challenge within ML lies in
translating such moral principles into measurable criteria, since the field still lacks
a unified and universally accepted definition of fairness.

In the context of ML, fairness lacks a universally recognized definition due to its
multifaceted nature, which varies depending on the specific application or scenario
(CATON e HAAS| 2024). A definition that is suitable for one context may not
be appropriate for another. This conceptual ambiguity has led to the proposal of
numerous fairness metrics, as the diverse definitions enable various approaches to
measure and emphasize different aspects of fairness (CASTELNOVO et al. [2022a)).

The coexistence of many metrics, with different perspectives, creates new chal-
lenges, for example, the Impossibility Theorem (CHOULDECHOVA] 2017; KLEIN-
BERG et al., 2016; BELL et al) 2023; BEIGANG]| 2023). This theorem demon-
strates that under certain circumstances, some fairness metrics cannot be satisfied
simultaneously. Consequently, it is not feasible to apply all fairness metrics to mea-
sure the inherent fairness in a model effectively. To resolve conflicts between met-
rics, it is necessary to understand the wide range of metrics available (KLEINBERG
et al., 2016; SELBST et al., 2019)).

Current fairness definitions and metrics are not always helpful and, in some cases,
can harm sensitive groups over time, exacerbating their disadvantages (LIU et al.|
2018). Measurement errors may also conceal true fairness, leading to unintended
consequences. To provide a comprehensive overview, this work will present several
widely used definitions and metrics of fairness, as summarized by MEHRABI et al.
(2022) and |[CATON e HAAS) (2024). These definitions illustrate the wide-ranging
interpretations and applications of fairness across different domains, emphasizing
the inherent complexity of addressing fairness in ML systems.

Fairness in ML is inherently connected to the concept of bias, and the two terms
are often used interchangeably. However, the meaning of bias differs depending on
the context. In the machine learning literature, bias often refers to the bias—variance
decomposition of error, reflecting systematic deviations of model predictions. In the

fairness literature, however, bias carries societal implications, such as prejudice or



discrimination (FERRARA] 2024). This work adopts the latter interpretation.
Bias can emerge at different stages of the ML pipeline, including data collec-
tion, model development, and user interactions. Once present, it can propagate
across multiple components of the workflow and generate feedback loops that am-
plify its effects over time. Since ML models are inherently data-driven, a model
trained on biased data is likely to produce biased predictions, which then lead to
biased outcomes. These outcomes may influence user behavior and, consequently,
the generation of new data that reproduces or even intensifies the original bias.
This cyclical process, as illustrated by Figure [2.1], underscores the critical impor-
tance of addressing bias in models, particularly when its implications have significant
societal impact. If left unattended, such biases may accumulate and reinforce them-
selves, creating a snowball effect that exacerbates disparities over time. Therefore,
mitigating fairness issues at the earliest stages is crucial to prevent them from esca-

lating into more severe and persistent forms of unfairness (MEHRABI et al.) [2022).

Figure 2.1: Bias in the data, algorithm and user feedback loop, inspired by figure
in MEHRABI et al|(2022). The arrows illustrate the feedback loop: data feed the
algorithm, the algorithm influences user behavior, and user behavior generates new
data that re-enters the system.

Data

User Algorithm

Ke——

Literature frequently identifies data as a central source of bias in ML systems.

Biases in data will manifest themselves in any model. Inappropriate uses of data can
lead to unconscious or conscious biases, compromise of data veracity and quality,
data relativity and context shifts and subjectivity filters (CATON e HAAS, 2024)).
The societal impacts of ML models are evident in the various types of discrimination

identified by MEHRABI et al.| (2022). These include:

Explainable Discrimination. The different treatment and outcomes in different
groups can be justified and explained. These differences are not illegal in many

places, hence called explainable. For example, in the Adult Dataset, males have



a higher annual income than females. However, this is because females work
fewer hours on average, so it is explainable (KAMIRAN e ZLIOBAITE, 2013).

Unexplainable Discrimination. In this case, in contrast with the previous one,
discrimination is unjustified and therefore illegal in many places. It would be
the case of the Adult dataset if the females worked the same number of hours

as males. It is divided in:

Direct Discrimination. Occurs when sensitive attributes explicitly result in
favorable or unfavorable outcomes. Certain traits identified by law, such
as race and gender, are illegal to have discrimination with, and often are

considered sensitive.

Indirect Discrimination. There is the appearance of non-discrimination, with
individuals not being treated based upon the sensitive attribute. However,
other attributes can have implicit effects linked to the protected attributes,

such as proxy variables.

Understanding these forms of discrimination is essential for designing and im-
plementing effective strategies to mitigate the potential societal harm caused by
ML models. Such harm is particularly critical when these systems are deployed on
a large scale, as their reach and influence can exacerbate inequalities and reinforce
existing biases. Addressing these issues requires a comprehensive approach that con-
siders not only technical, but also ethical, legal, and cultural dimensions to ensure

equitable and fair outcomes.

2.3 Methodological Components for Ensuring Fair-

ness

Although there is no universal definition of fairness, key methodological components
are common across most approaches. Central to these methodologies are sensitive
or protected attributes, which denote variables of fairness concern, such as gender
and race. Sensitive attributes are typically categorized into privileged groups, which
enjoy advantages, and unprivileged groups, which face disadvantages. An example
is an automated loan decision-making system biased with respect to the sensitive
attribute of skin color. In such a case, historical patterns may lead to higher approval
rates for applicants with white skin color, the privileged group, and lower approval
rates for applicants with black skin color, the unprivileged group.

Fairness research has largely concentrated on classification problems, reflecting

the central role of classification in ML and its extensive use in domains involving
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consequential human decisions. Binary classification has become the dominant set-
ting, both for its analytical tractability and for its alignment with many high-stakes
applications where decisions are inherently binary. While extending these methods
to multi-class problems is feasible, it demands more elaborate fairness definitions
and optimization constraints (CATON e HAAS, [2024)).

Defining which variables qualify as sensitive attributes is non-trivial. Legal
frameworks often guide these determinations (BERK, 2019; |[LEE, 2018]). Addition-
ally, there are proxy variables, which are not explicitly sensitive but closely correlated
with the sensitive attributes. Many fairness definitions do not take the proxy vari-
ables into consideration (CHIAPPA e ISAAC, 2019), which can erroneously suggest
the model is fair, increasing the risk of discrimination, as seen in cases of redlining
(ZARSKY! [2016; VEALE e BINNS| 2017). Related variables have been extensively
studied in the privacy and data archiving literature (ZIMMER) 2010).

In many real-world contexts, individuals are characterized by more than one
sensitive attribute, such as the intersection of gender, race, and age. Fairness con-
siderations that account for only a single attribute may therefore overlook com-
pounded disadvantages that arise from the intersection of multiple identities. This
phenomenon, known as intersectional fairness, emphasizes that discrimination can
emerge not merely from one protected characteristic but from their combination
(CRENSHAW, [1989). For instance, the experiences of Black women may differ
significantly from those of either Black men or white women, and fairness assess-
ments must recognize these intersecting effects. Addressing fairness across multiple
sensitive attributes requires multidimensional formulations of fairness metrics and
often demands larger datasets to ensure sufficient representation of all intersectional
subgroups (CATON e HAAS| 2024).

Also, a key component of such strategies is the proper understanding and ap-
plication of fairness metrics, which provide a framework for quantifying and ad-
dressing discrimination within ML models. The taxonomy of fairness definitions
usually classifies fairness metrics into group metrics and individual metrics. Group
fairness metrics aim to ensure similar treatment of different demographic groups,
emphasizing balanced outcomes and performance across the entire population. In
contrast, individual fairness metrics emphasize consistent treatment of individuals
who are deemed similar based on relevant characteristics (MEHRABI et al., 2022).
Although both approaches strive to minimize unfairness, they can sometimes conflict
with one another, and choosing the most appropriate metric depends on the spe-
cific context, such as domain requirements, legal considerations, and societal values
(GREEN] 2018; CORBETT-DAVIES et al., 2023]).

Group fairness focuses on the equitable treatment of predefined groups and ad-

dresses systemic imbalances in different demographic segments. Demographics may
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be gender, race and sex, for example. This approach reflects legal principles such as
non-discrimination, which is required by law in many countries. Group fairness is
often applied in domains where decisions significantly impact social equity, such as
hiring, lending, and criminal justice.

Individual fairness emphasizes the equitable treatment of similar individuals, re-
flecting the principle that like cases should be treated alike. Unlike group fairness, it
does not rely on explicit group membership but instead focuses on pairwise compar-
isons based on similarity. Promoting individual fairness requires a clearly defined
similarity metric to quantify how similar two individuals are, that often depends on
domain-specific knowledge.

In this context, let Y denote the True Class, which represents the actual but
unobservable label of an instance in the real world. Since Y is not directly accessible,
we instead rely on the Observed Class, denoted by Y, which corresponds to the class
label recorded in the dataset and is used in ML computations. The Predicted Class,
denoted by Y, is the label assigned by the model, which aims to predict YV as
accurately as possible.

In the case of binary classification, all these class labels take values in {0, 1},
where 1 represents the positive class, the more favorable or desirable outcome, while
0 represents the negative class, associated with the less desirable outcome. Conse-
quently, Y = 1 indicates that an instance is truly entitled to the favorable outcome,
whereas Y = 0 means it is not. Similarly, Y =1 implies that the historical data
assigns the instance to the positive class, while Y = 0 assigns it to the negative
class. The model predicts Y = 1 if it assigns the instance to the positive class and
Y = 0 otherwise.

A correct prediction occurs when the predicted label matches the observed label,
e, Y =Y. Conversely, if Y # Y, the model has made an incorrect prediction.
Let E denote the incorrect prediction. The distinction between these class labels is
fundamental in fairness evaluations, as disparities in prediction errors across different
demographic groups may indicate biases in the ML model.

There can also be label noise, when Y # Y. It can occur due to errors in the
process of data collection, such as malfunctioning machinery or human annotation.
Let E denote the label noise. It is important to distinguish between the types of
errors, noise and fairness, because mislabeling can lead to biased model evaluations
and unfair decisions, so it is important to know their source.

The model makes predictions based on a set of input attributes X, which includes
the sensitive attribute A. For contrast, we also consider X_ 4, the set of attributes
excluding A. The sensitive attribute A is binary, where A = 1 denotes the privileged
group, and A = 0 denotes the disadvantaged or protected group. The following

sections and the rest of this work will use this notation to present and also formally
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define some widely used ML and fairness metrics and other important concepts,
such as noise in the data, that occurs when Y # Y.

A fundamental tool for evaluating the performance of ML models is the Con-
fusion Matrix (CM), which summarizes the relationships between the true labels
and the predicted labels in a classification task. It is a framework that provides
a comprehensive basis for computing numerous predictive and fairness metrics. In
binary classification, it is typically laid out as shown in Table[2.1] with four principal
components. These components are crucial for calculating numerous performance

metrics, e.g., [Acc] Precision (Prec)), Recall (Rec)), [F1} and are also used in several

group fairness metrics (MEHRABI et al., 2022).

True Predicted
Positive | Negative
Positive TP FN
Negative FP TN

Table 2.1: Confusion Matrix

True Positive . Occurs when the model predicts a positive class and the
actual ground-truth class is also positive. For example, in a healthcare context,
a[TP] would be a patient who genuinely has a disease and is correctly diagnosed
by the model.

True Negative (TN)). Refers to when the model predicts a negative class and the
actual class is indeed negative. Continuing the healthcare example, a would
represent a patient who does not have a disease and is correctly identified as

disease-free by the model.

False Positive (FPJ). Corresponds to the situation where the model predicts a
positive class, but the ground-truth label is negative. In a criminal justice
context, this could be interpreted as an individual who is wrongly flagged as

high-risk by a recidivism model, although they pose no real threat.

False Negative (FN|). Represents the case where the model predicts a negative
class when the true label is actually positive. For instance, a college admis-
sions model that incorrectly rejects a qualified applicant would represent a [FN],

indicating a missed opportunity.

Building on these four counts, it is customary to work with the associated rates,
which normalize each count by the corresponding condition set. These rates pro-
vide scale-free summaries that facilitate comparison across datasets and groups, and

several group fairness definitions are directly expressed as differences between such
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rates across sensitive groups. Using the notation introduced above, the following

definitions will be used throughout this work.

Definition 1 (True Positive Rate). The proportion of truly positive instances cor-

rectly predicted as positive. It can be expressed as

Definition 2 (True Negative Rate). The proportion of truly negative instances cor-

rectly predicted as negative. It can be expressed as
TNR = ——— = P(Y=0|Y =0).

Definition 3 (False Positive Rate). The proportion of truly negative instances in-

correctly predicted as positive. It can be expressed as

Definition 4 (False Negative Rate). The proportion of truly positive instances in-

correctly predicted as negative. It can be expressed as
FNR = ———— = P(Y =0|Y =1).

Group fairness metrics ensure that distinct demographic or sensitive groups,
e.g., based on gender, race, or age, receive equitable treatment by the ML model.
These metrics are particularly important in settings where legal protections exist for
historically marginalized or vulnerable groups. Many group fairness metrics utilize
the framework of the CM to derive their formulas. Below are some of the most
widely used group fairness definitions (GURSOY e KAKADIARIS| 2022).

Definition 5 (Statistical Parity). The probability of an individual receiving a fa-
vorable, usually positive, predicted class should be equal across all groups defined by
the sensitive attribute (DWORK et al., |2011). It can be expressed as

PV =1|A=1)=P(Y =1|A=0). (2.1)

This means that membership in a protected group should not disproportionately
increase or decrease one’s chances of a positive classification outcome. While this
definition is straightforward and relates to many legal anti-discrimination doctrines,
it does not account for potential differences in the underlying distributions of the

groups, such as distinct base rates of a certain condition or behavior.
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Definition 6 (Equal Opportunity). The probability of an individual with a favorable
true class receiwing a favorable predicted class should remain the same across all
groups defined by the sensitive attribute (HARDT et al., 2016). It can be expressed
as

PY=1|Y=1,A=1)=PY =1|Y =1,A=0). (2.2)

[Eq. Opp/]focuses on the true positive rate, the rate of correctly predicted positive
instances, for each group of the sensitive attribute. The idea is that the probability of
an individual being correctly assigned a positive outcome should be the same across
all groups. By emphasizing the true positive rate, equal opportunity seeks to address
scenarios where one group might experience significantly more false negatives than
others, ensuring that qualified, or actual positive individuals, are not overlooked due

to discriminatory model behavior.

Definition 7 (Predictive Equality). The probability of an individual with an unfa-
vorable true class, usually negative, receiving an unfavorable predicted class should
remain the same across all groups defined by the sensitive attribute. It can be ex-

pressed as

PY=0|Y=0A=1)=P(Y =0]|Y =0,4=0). (2.3)

Predictive Equality (Pred. EQ.), unlike [Eq. Opp.| focuses on the true negative

rate, the rate of correctly predicted negative instances, for each group of the sensitive
attribute. For example, a predictor that labels individuals as bad payers should be

the same for white and black groups.

Definition 8 (Equalized Odds). Both probabilities of an individual with a favorable
true class receiving a favorable predicted class, and of an individual with an unfa-
vorable true class receiving an unfavorable predicted class, should remain the same
across all groups defined by the sensitive attribute (HARDT et all, |2016). It can be

expressed as

PY=1|Y=1,A=1)=PY =1|Y =1,A=0),

. . (2.4)
PY=0|Y=0A=1)=PY =0|Y =0,4=0).

combines [Eq. Opp)| and [Pred. EQ] by requiring that both the true
positive rate and the true negative rate are the same across all groups. Equiva-

lently, the probability of correct classification for both positive and negative true
labels should be equal. This metric attempts to guarantee that both positive and

negative outcomes are assigned fairly across groups. However, satisfying

can sometimes be more challenging than enforcing only [Eq. Opp.| or [Pred. EQ.|

especially when base rates differ significantly between groups.
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Notably, there is a clear differentiation in group fairness metrics, where some
metrics, like rely only on predicted values, while others, like [Eq. Opp]
and [Eq.  Odds, depend on components of the CM (GURSOY e KAKADIARIS,
2022). The choice of which group fairness metric to use has practical and ethical
implications. Certain definitions may be more aligned with legal precedents, while
others better capture nuanced ethical positions.

Individual fairness methods can be more precise than group-based metrics in
certain contexts, particularly when fine-grained differences within a single demo-
graphic group are relevant. However, they can also be more complex to operate,
as one must define a proper similarity measure between individuals and possess the
necessary domain knowledge to ensure that the comparisons are valid. One widely
discussed individual fairness metric is Counterfactual Fairness (KUS-
NER et al., 2018)), which attempts to measure how an individual’s outcome would

differ if their sensitive attribute were changed.

Definition 9 (Counterfactual Fairness). For every individual, if an individual’s
sensitive attribute were changed, keeping all other attributes constant, their predicted

outcome probability should remain unchanged. It can be expressed as
PY=y|X_ a=2,A=1)=PY =y|X_4=2,A=0). (2.5)

The key principle here is examining how the same individual would be treated
if only their protected attribute changed while keeping all other characteristics con-
stant. Achieving counterfactual fairness can be computationally intensive.

The literature has yet to reach a consensus on whether it is better to prioritize
group fairness or individual fairness metrics, as different scenarios may call for dif-
ferent perspectives. Practitioners and researchers often face trade-offs: optimizing
a model for one fairness metric can lead to compromises in another, or potentially
reduce predictive performance. Moreover, fairness metrics, even though mathemati-
cally well defined, may not fully capture all social, economic, or legal considerations
relevant in a real-world context (GREEN] [2018; CORBETT-DAVIES et all [2023;
CALMON et all 2017, AGARWAL et al., 2018; SPEICHER et al., 2018 SKIRPAN
e GORELICK, 2017).

2.4 Fairness-Performance Trade-offs in Machine

Learning

With the advent of fairness metrics, fairness is often treated as an additional dimen-
sion of ML model evaluation (CATON e HAAS, 2024). Typically, there is a trade-off
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between fairness and predictive performance metrics. Frequently, an improvement
in fairness metrics results in a decrease in predictive performance. A predictor de-
signed to reduce bias against a specific group may deviate from the true class labels,
thereby increasing errors. Also, to achieve fairness, it is often necessary to add con-
straints to the model, making its optimization more complex. And a model that has
a poor predictive performance, even if it produces fair outcomes, is inadequate for
practical use, especially because prediction errors themselves can cause unfairness.

Therefore, understanding the various approaches to promote fairness is necessary.
A rich body of research has sought to address this tension by introducing technical
interventions that aim to improve fairness while preserving predictive performance.
These interventions are generally categorized into three families (D’ALESSANDRO
et al., 2017, BARBIERATO et al., 2022)):

Pre-Processing. Modify or re-weight the dataset before the model training to
remove or mitigate bias. A key advantage is that they can be applied to any
standard ML algorithm without modifying the model itself. However, modifying
datasets may lead to legal implications or complications in explaining why or
how the data was changed (LEPRI et al., 2018; LUM e JOHNDROW, 2016).

In-Processing. Includes fairness objectives into the learning algorithm, often
adding constraints that penalize forms of bias. This approach allows fine-grained
control during training, enabling the model to balance fairness goals with pre-
dictive performance. Yet, it demands full access to the model function, which

might not always be available.

Post-Processing. Adjust model predictions or decision thresholds after the model
has been trained. The main advantage here is that the original model remains
intact. However, post-processing changes may also face legal implications and be

difficult to interpret, potentially complicating transparency and accountability.

These three categories provide a structured way of thinking about fairness in-
terventions, but in practice, the challenge lies in balancing fairness with predictive
performance. Simply optimizing for fairness without regard to accuracy does not
resolve the problem, since unreliable predictions can produce new forms of harm.
Conversely, optimizing only for predictive accuracy may reinforce existing dispar-
ities. A common perspective frames this trade-off in terms of the Pareto Front
(PARETO, 1919), where both fairness and performance reach acceptable levels, and
neither can be improved further without compromising the other. Determining this
balance must be guided by the application domain, as well as ethical and legal

considerations.
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In the following, common performance metrics used to evaluate the predictive
ability of ML models are presented. These metrics often come into conflict with
fairness goals (KLEINBERG et all 2016]), underscoring the importance of adopting

a multi-objective perspective when designing, training, and deploying ML systems.

Definition 10 (Accuracy). The ratio of correct predictions, both true positives and
true negatives, to the total number of predictions made by the model. It gives the

probability that a specific prediction is correct. It can be expressed as

_ [CPHTN]
- MAHTNHFPHEN]

Acc.

(2.6)

This metric provides a quick snapshot of overall model performance. Despite its
popularity, it can be misleading in cases of class imbalance. For instance, if there
aren’t many examples of the positive class, a model that predicts everything as the
negative class could still achieve deceptively high

Definition 11 (Precision). The ratio of correctly predicted positive mstances to
the total number of instances predicted as true positive and false positive [FPt
measures the reliability of the positive predictions made by the model. It can be

expressed as

A
[P +{FP
A high indicates that when the model predicts a positive instance, it is

likely to be correct. However, this metric does not give any information about the

Prec.

(2.7)

negative predictions of the model.

Definition 12 (Recall). The ratio of correctly predicted positive instances to
the total number of actual positive instances, that is, all of[TP and [FN. It measures

the model’s ability to identify all positive instances. It can be expressed as

[P
TP+HFN|
A high indicates that the model captures most positive instances. It works

well with imbalanced classes, but it does not account for false positives. So if a

model predicts all positives, it will achieve high but will not be practically

useful. This metric is particularly important in scenarios where missing a positive

Rec. (2.8)

case has serious consequences.

Definition 13 (F1 Score). The harmonic mean of [Prec] and [Rec] It can be ex-

pressed as

: [Precl{Recl

) 2.9
(2:9)
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This metric is particularly useful when the focus is on the positive class, especially
in imbalanced datasets. However, the [F']] does not account for the number of [TN]
Thus, while it balances and [Rec] it may not accurately reflect the model’s

performance in correctly identifying negative instances.

Definition 14 (Matthews Correlation Coefficient). It is a balanced metric for bi-
nary classification that incorporates all four components of the CM: [TH, [TN, [FP,
and[FN. Its value ranges from —1 to 1, where 1 denotes perfect prediction, —1 indi-
cates total disagreement between predicted and observed labels, and 0 corresponds to

performance no better than random guessing. It can be expressed as

Moo (CA{TN) — (FA{FN)

VP ER) TPHEN) CNHED) N HEN)

(2.10)

The [MC(] value ranges from -1 to 1, where 1 indicates a perfect prediction, 0
corresponds to random guessing, and -1 suggests a completely inverse relationship
between predicted and observed labels. By accounting for both positive and negative
examples, as well as correct and incorrect predictions, this metric can offer a more
comprehensive picture of a model’s performance than or alone, particularly
in imbalanced classification tasks (CHICCO e JURMAN] 2020), so it will be used
as the primary performance metric in this work.

While each of these metrics provides a unique perspective on predictive perfor-
mance, they can all conflict with fairness initiatives. A model optimized strictly for
might disregard harmful outcomes for small, underrepresented groups. A model
tuned for [FI] might systematically overlook disparities in how negative outcomes are
allocated. And an [MCCloriented approach, although more balanced, may still fail
to capture more nuanced unfairness dimensions if it is not incorporated specific
fairness considerations. Therefore, practitioners should consider adopting a multi-
metric perspective, balancing model performance metrics alongside fairness metrics
to build models that are both effective and equitable.

19



Chapter 3

Systematic Label Flipping for

Fairness Stress Testing

To assess how traditional ML models are affected by the unfairness inherent in data,
it is essential to work with datasets in which the level of bias can be systematically
controlled. Using a single biased dataset does not allow for the analysis of how
models react as unfairness increases. For this reason, there is a strong motivation
to develop approaches that generate datasets with progressively higher levels of

unfairness, which in turn motivated the method proposed in this work.

3.1 Motivation for Proposed Method

Ensuring fairness in ML requires both creating fair datasets and developing models
capable of producing fair predictions. A common assumption in the field is that
models trained on fair data will inherently yield fair predictions; however, theoretical
analyses have demonstrated that this assumption does not necessarily hold true
(ZHANG et all 2018). As such, there is significant value in having access to both
fair and explicitly unfair datasets, which allows researchers to more comprehensively
study and understand fairness in ML contexts (XU et al., [2019)).

Despite this clear necessity, the literature currently faces critical limitations re-
garding datasets explicitly designed or selected for fairness studies. The primary
issues highlighted by researchers include privacy concerns, insufficient generaliza-
tion, and limited dataset documentation (BAO et al., 2022; FABRIS et al., 2022;
QUY et al., 2022; PAULLADA et al., 2021). Furthermore, existing datasets can
pose challenges for fairness evaluations because they often lack predictive variables
relevant for fairness analysis, contain sparse data, or omit critical demographic cat-
egories (BELITZ et al., 2023; KEYES, 2018; SCHEUERMAN et al., [2020). Recent

critiques have also exposed fundamental shortcomings within benchmark datasets
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typically employed for fairness algorithm comparisons, emphasizing their inability
to adequately represent diverse scenarios or reliably measure fairness across varying
contexts (DING et al,2022). Thus, method for generating datasets are needed for
classification tasks, especially within the context of algorithmic fairness.

Most fairness-related ML research relies heavily on a small set of benchmark
datasets, notably COMPAS and Adult, to compare algorithmic fairness across meth-
ods (BAROCAS et al, 2023; [FABRIS et al, 2022; |QUY et al., 2022). However,
critical assessments reveal numerous problems with these benchmarks, ranging from
ethical privacy concerns and domain specificity issues to flawed categorization pro-
cesses (BAO et al., [2022; FABRIS et al, 2022; SCHEUERMAN et al., 2020; DING
et all [2022; DRECHSLER) 2010; BUOLAMWINI e GEBRU| 2018; |[WANG et al.|
2022). For example, the COMPAS dataset, widely used for recidivism prediction
in the criminal justice system, has been criticized for overlooking crucial sociotech-
nical contexts essential for accurate risk assessment (BAO et all [2022). It also
misrepresents re-arrest as actual reoffending, even though re-arrest only captures
offenses that result in detection and arrest (BAO et al., [2022). Similarly, the Adult
dataset has faced criticism due to various inherent biases and calls for discontinu-
ation of its use in fairness research (DING et al. 2022). Additionally, educational
Al datasets face issues regarding demographic representativeness, highlighting con-
cerns that demographic imbalances may significantly skew learning outcomes and
analyses (BAKER e HAWN]| 2022; COCK et al., [2023)).

Although sharing datasets is essential to ensure transparency and reproducibil-
ity, several studies have demonstrated that even anonymized datasets may inadver-
tently reveal private information, e.g., through membership inference (HAGEST-
EDT et al, 2019; [PYRGELIS et al., 2017; SHOKRI et all |2017) or model inver-
sion attacks (FREDRIKSON et al., [2015; MELIS et all 2018). To address this,
researchers have proposed using synthetic datasets, which replicate the statistical
characteristics of original data without containing personally identifiable informa-
tion (ABOWD e VILHUBER| [2008; HAND), [2012). Synthetic data can safely be
shared and reused without compromising the privacy of individuals, while also en-
abling researchers to efficiently explore different hypotheses or model various sce-
narios. It is also possible to modify a base dataset to explore how changes in the
data affect the model, for example, increasing its bias in regards to individuals in
the protected group. This approach is particularly beneficial when examining edge
cases (KHAYRALLAH e KOEHN]| [2018; MELAMUD e SHIVADE] [2019), allowing
experiments to proceed even when real-world data is limited or unavailable.

Given these issues, there is an evident necessity for generating tailored datasets
that reflect a broad spectrum of biases and fairness contexts, facilitating more robust

and generalizable evaluations. Recent literature confirms growing concerns regarding
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the over-reliance on limited benchmarks, advocating instead for datasets that better
represent diverse contexts, ensure detailed documentation, and follow careful design
processes (BAO et all 2022; FABRIS et al., 2022; BAROCAS e SELBST, 2016
JIANG et all 2024).

It is essential to recognize that datasets significantly influence research outcomes
and set the direction for future research efforts (BAROCAS et all |2023). The mea-
surement of fairness itself is inherently tied to the labels and demographic or indi-
vidual categories available within the datasets (JIANG et al., 2024)). Consequently,
considerable attention has been given to the origins, collection processes, and repre-
sentativeness of these datasets relative to the problem being studied (PAULLADA
et al [2021). Due to the scarcity of diverse and robust datasets, generating datasets
specifically designed for fairness evaluation has become an area of growing interest
(JIANG et al., [2024]).

To address these challenges, synthetic dataset generation has emerged as a
promising method to systematically study bias and fairness in machine learning.
Previous approaches have employed structural equation modeling for generating bi-
ased datasets (BARBIERATO et al., 2022)) or leverage synthetic data to investigate
underlying biases within datasets (CASTELNOVO et al., 2022b)). Nevertheless, re-
search also warns that synthetic data itself may unintentionally introduce or amplify
biases, thereby necessitating careful and rigorous validation procedures (GUPTA
et al., 2021)).

The existing synthetic dataset generation algorithms share a common objective,
that is to model relations among variables that were present in the original dataset
(ASSEFA| [2020). Most algorithms build probabilistic models by estimating distri-
butions of relevant variables, such as mixtures of Gaussian distributions or multino-
mial feature distributions (AGUIAR e COLLARES-PEREIRA| [1992; SINGH et al.|
2010). Established ML techniques like Bayesian networks (ZHANG et al., 2014)),
support vector machines (DRECHSLER! [2010)), and random forests (CAIOLA e RE-
[TER] 2010) have also been employed for synthetic data generation. More recently,
deep learning methods, particularly Generative Adversarial Networks (GAN), have
significantly advanced synthetic data generation capabilities, initially in image do-
mains and subsequently extending into various other contexts, including fairness
research (CHEN et al,2021; GOODFELLOW et al. [2014). Among the approaches
explored in the literature, XU et al. (2019) and BREUGEL et al.| (2021) propose
methods based on GAN to generate fair tabular synthetic data as a novel prepro-
cessing step for training fair models.

However, despite these advancements, current synthetic data generation algo-
rithms tend to target specific bias measurements and typically require the original

data to conform to predefined distributions. Real-world data often involves multiple

22



variable types, categorical, binary and continuous, and biases present in such data
can result from complex, interwoven factors that simplistic modeling methods fail
to capture adequately. Furthermore, there is a limited amount of research focusing
explicitly on systematically generating or altering datasets exhibiting varying levels
of unfairness (BARBIERATO et al., 2022), thereby constraining researcher’s ability
to rigorously investigate how ML models respond to incremental variations in data
bias levels.

In light of these limitations, this thesis introduces a novel methodology for pre-
processing datasets with explicitly controlled, varying levels of unfairness. This ap-
proach allows a thorough analysis of how conventional models behave under different
unfairness conditions, enabling researchers and practitioners to better understand
the impacts of bias on performance. By systematically varying unfairness within
datasets, this method not only enhances our understanding of fairness measure-
ment and algorithm performance but also contributes to ongoing efforts to overcome
dataset-related limitations discussed in the fairness literature. This methodology is
employed to analyze traditional ML algorithms with respect to fairness, thereby de-
termining the necessity and effectiveness of fairness mitigation techniques for each

algorithm.

3.2 Bias, Noise or Fairness?

Large data sets used for training ML models often contain imperfections resulting
from various factors, such as incorrect collection data processes and historical or
societal biases. Two important concepts that help characterize these imperfections
are noise and fairness. Both can harm the training of the model in different ways,
degrading its predictive performance and fairness in the outcomes; therefore, it is
important to differentiate them.

Noise refers to the presence of inconsistencies in the data that obscure the true
relationship between the features of an instance and its label (FRENAY e VER-
LEYSEN| [2014; HICKEY] (1996; QUINLAN| 1986). It is typically conceptualized
as a stochastic process, which means that it arises from random mechanisms rather
than systematic, intentional distortions. Such randomness can emerge in various
ways during data collection, ranging from sensor inaccuracies to human annotation

errors. There are two major categories of noise in the literature, feature noise and

label noise (FRENAY e VERLEYSEN; [2014]).

Feature noise. This type of noise occurs when observed feature values are not
equal to their true values. For example, applicants for a loan might mistakenly

enter their income incorrectly, e.g. 50000 instead of 500000. While feature noise
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may degrade model performance, models trained on sufficient and diverse data

may develop some resilience to moderate amounts of noise in the features.

Label noise. This noise affects the labels rather than the features. For example,
a radiologist might incorrectly label an X-ray as healthy when it actually shows
early signs of pneumonia, due to factors like fatigue or oversight. Because there
is usually only one label per instance but potentially many features, label noise

is more seriously harmful to the learning process than feature noise FRENAY e

VERLEYSEN] (2014).

In the context of label noise, it is crucial to note that the underlying Y remains
unchanged, since it is the class of the real world. Only the Y is corrupted. The
taxonomy commonly adopted to formalize label noise is based on the dependence or
independence of the noise-generating process with respect to the true class Y and
the features X (FRENAY e VERLEYSEN| [2014)), as shown ahead and in Figure
B.11

Noise Completely at Random (NCARJ). The occurrence of label noise E is
independent of both the features X and the true labels Y. An example is
randomly flipping labels in a binary classification problem equal probability for
every instance. In practice, this occurs in email spam classification when emails

are mislabeled accidentally regardless of their content.

Noise at Random . The noise E depends solely on the true label Y and not
the features X. An example in binary classification is flipping positive labels
at a different rate than negative labels. A practical example occurs in X-ray
images labeled by medics as healthy or pneumonia. Mild pneumonia cases are
more likely to be mislabeled as healthy because they are harder to detect than

severe pneumonia cases.

Noise Not at Random . The noise E process depends on both the
features X and the true labels Y. An example is flipping labels in a binary
classification problem with different rates depending on specific subgroups char-
acterized by certain feature values. In spam detection, long emails with many
attachments are more likely to be mislabeled as spam, and the mislabeling prob-

ability also depends on whether the email truly is spam.
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Figure 3.1: Noise taxonomy from a statistical perspective. (a)[NCAR] (b) NAR|and
(¢)[NNAR| The arrows correspond to the statistical dependencies. Figure was made
inspired by ATKINSON e METSIS (2021)).
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Fairness in ML refers to the development of models that make equitable deci-
sions or predictions for different social groups (MEHRABI et al., [2022; CHOULDE-
CHOVA| 2017, HARDT et al., 2016). Fairness issues often arise due to bias in the
data or in the model training process. Broadly speaking, bias refers to systematic
distortions that yield unfair outcomes for particular subgroups (MEHRABI et al.,
2022; BAROCAS e SELBST!, 2016)). It is important to note that these biases are not
necessarily random or unintentional. In fact, biases may emerge due to historical
oppression, discrimination, or structural inequalities that become embedded in data
collection, labeling, or curation processes.

Despite some conceptual overlap, noise and bias are distinct phenomena (FRE-
NAY e VERLEYSEN] 2014; [WANG et al., 2021)). Noise is largely characterized by
random, unintentional distortions in the labels or features. By contrast, bias is often
connected to historical and social issues, and can even be intentionally introduced
to marginalize certain groups. Thus, while noise can degrade performance, bias can
lead to unfair treatment of specific subpopulations. Bias and noise are related phe-
nomena that distort data, ultimately impacting the models trained on such data.
When noise affects different groups unevenly, it can introduce unfairness into ML
models that rely on this data for training (WANG et al} 2021)).

For instance, suppose the actual positive class (Y = 1) is misclassified more
frequently as a negative label (Y = 0) within the protected group (4 = 0) than in
the privileged group (A = 1). Simultaneously, instances from the privileged group
(A = 1) with a true negative class (Y = 0) may be disproportionately mislabeled as
positive (Y = 1). Such an imbalance can lead to an increased false negative rate for
the protected group and a higher false positive rate for the privileged group, causing
systematic unfairness. In this scenario, the presence of NNAR] data contributes to
the propagation of harmful social biases.

However, the distinction between noise and bias may become blurred when the
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label corruption disproportionately affects one social group more than others. For
example, consider a binary classification task where the positive class of a protected
group (Y = 1, A = 0) is more often mislabeled as negative (Y = 0) than for a
privileged group (Y = 1, A = 1). If the source of this mislabeling is unintentional,
e.g., due to flawed measurement instruments or fatigue that happens more often
in specific contexts, it can still be considered noise. Yet, its disparate impact on
protected groups can yield unfair outcomes once the model is trained on such data.

On the other hand, bias often arises through structural or historical injustices,
such as explicitly discriminatory labeling practices or socio-economic factors that
skew the data. Consequently, the same observed phenomenon, e.g., higher mislabel-
ing rates for a certain group, could be attributed to either label noise or bias, or a
combination of both, depending on the underlying reasons. This duality underscores
the difficulty in cleanly separating the concepts in real-world scenarios. Even when
data is free from noise and accurately reflects the observed features and correspond-
ing labels, it may still exhibit unfairness. This occurs because the social processes
responsible for generating such data can disadvantage certain groups, embedding
biases into the dataset.

As discussed before, in MEHRABI et al.| (2022) various forms of bias that can
affect ML systems were presented. When the actual class is inaccurately recorded
due to systematic distortions, the discrepancy between the true and observed labels
(Y #Y) constitutes what is known as Measurement Bias. Additionally, a dataset
classified as can introduce Population Bias, that occurs when the dataset
used for training inadequately represents the broader target population, leading to
disparities between model performance in training versus real-world deployment.

The noise NNAR] can exacerbate fairness concerns because the label corruption
is linked not only to the true label but also to the features, including potentially
protected attributes (FRENAY e VERLEYSEN| 2014). For instance, a scenario
could arise where the positive class is flipped more often for protected groups and
the negative class is flipped more often for privileged groups. Consequently, such
label noise leads to undetected higher false negative rates among protected groups
and higher false positive rates among privileged groups. Since many fairness metrics,
such as[Eq. Odds], center on disparities in false positive rates and false negative rates,
label noise can directly distort fairness outcomes.

Moreover, WANG et al| (2021)) highlight scenarios in which this type of noise
translates into systematic misrepresentation of protected groups, compounding ex-
isting biases. In such situations, the boundary between noise and bias becomes
further intertwined, as the noise is disproportionately harming certain groups and
thus is also a driver of unfairness.

Research in both label-noise mitigation and fair ML has grown significantly in re-
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cent years. Label-noise mitigation strategies, such as loss correction methods, robust
loss functions, or active label cleaning, focus on reducing the negative impact of mis-
labeled samples on model training (FRENAY e VERLEYSEN| 2014; ZHANG et al.|
2025). Meanwhile, fairness-driven strategies aim to produce unbiased or less dis-
criminatory predictions by intervening at different stages of the ML pipeline. These
include pre-processing methods, such as reweighting or subsampling the training
data; in-processing techniques, which incorporate fairness constraints directly into
the optimization function; and post-processing approaches, like calibrating model
outputs separately for each subgroup (MEHRABI et al., 2022; CHOULDECHOVA]|
2017, HARDT et al., [2016).

However, the confluence of label noise and fairness presents open challenges:

e Detecting label noise in protected groups: The process requires
careful scrutiny of data-generating mechanisms and may involve domain ex-

pertise to discern whether label corruption rates are higher for certain groups.

e Balancing accuracy and fairness under label noise: Traditional label-
noise mitigation focuses on accuracy, whereas fairness-aware solutions prior-
itize equitable performance. When label noise and bias co-exist, reconciling

these objectives can be challenging.

e Temporal considerations: As models are retrained or updated with stream-
ing data, changes in noise characteristics or shifts in bias patterns necessitate

ongoing monitoring and intervention (MEHRABI et al., [2020).

Beyond methodological challenges, there are broader ethical and practical im-
plications. Even in the absence of label noise, data can encode societal biases that
yield unfair outcomes. Consequently, near-perfect noise free data can still be over-
shadowed by fairness problems if the decision-making process itself is inherently
discriminatory. Thus, mitigating noise or improving data quality does not eliminate
the need to address fairness, and vice versa.

Recognizing that fairness is not merely a technical challenge but also a reflection
of societal and historical contexts implies that purely technical solutions may be in-
sufficient to guarantee equity. Stakeholder collaboration, inclusive decision-making,
and transparent reporting are essential for effective deployment of ML systems in
sensitive applications such as hiring, lending, or criminal justice.

In summary, noise and fairness are conceptually distinct but related phenomena
in ML. Noise typically refers to random, unintentional corruptions in data, such as
mislabeled instances, and can be characterized by taxonomies like [NCAR] [NAR]and
(FRENAY e VERLEYSEN| [2014)). Fairness, on the other hand, addresses
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systematic disparities that disadvantage protected groups due to structural, histori-
cal, or social factors or treat individuals disproportionately (MEHRABI et al., [2022;
HARDT et all 2016).

While noise may affect all groups, it can amplify fairness concerns if its oc-
currences differs by subgroup, as often happens in scenarios (FRENAY e
VERLEYSEN] [2014; [WANG et all 2021). In such cases, noise and bias become in-
tertwined, making it challenging to disentangle one from the other. Approaches to
mitigate label noise can help improve overall model performance, but fairness-driven
strategies remain essential to ensure that improvements do not come at the expense
of marginalized communities.

Ultimately, addressing these challenges holistically requires a multi-faceted ap-
proach that integrates the strengths of methods designed for label-noise robustness
and fairness-aware modeling. Such an approach not only strives for reliability in
predictive performance but also ensures that models conform to socially acceptable

standards of equity and justice.

3.3 Related Work

Developing a fairness-aware predictive algorithm has become a fundamental objec-
tive due to the widespread adoption of automated decision-making systems. Suc-
cessful AI and ML models requires access to large amounts of high-quality data
(PANEL 2020). However, collecting such information is a challenging task because
some types of data are costly to collect and many business problems that are solved
through these models require access to sensitive customer data, such as medical or
financial records (BARBIERATO et al., 2022).

To address these issues, recent research has increasingly turned towards synthetic
data generation, specifically aiming to achieve fairness objectives or replicate biases.
Nonetheless, generating synthetic data that accurately reflects statistical properties
of datasets does not fully resolve or eliminate inherent biases. Indeed, real-world
data often inherently contain biases that must be identified, addressed, or explicitly
controlled before training models (BARBIERATO et al., 2022).

Despite numerous contributions to fairness evaluation and detection methodolo-
gies, fewer studies have explored methods explicitly designed to generate intention-
ally biased datasets. Such methods hold considerable value, providing data scien-
tists with explicit control over bias introduction, allowing them to test and validate
fairness algorithms under controlled conditions (BARBIERATO et al., 2022). Inten-
tionally biased datasets are crucial for rigorously assessing bias mitigation strategies,
especially in the context of developing fairness-aware ML classifiers. Consequently,

synthetic datasets that precisely encode user-defined correlations and bias levels
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become invaluable tools in evaluating fairness strategies.

In this context, BARBIERATO et al. (2022) introduce a methodology enabling
explicit control over bias and fairness within generated datasets through structural
equation modeling (SEM). Their approach consists of clearly defined dependencies
among dataset features and employs probabilistic sampling techniques to produce
synthetic datasets with user-specified fairness or unfairness levels. Their methodol-

ogy is structured around five primary steps:

1. Defining a probabilistic network characterizing feature dependencies and their

magnitudes;

2. Adjusting dataset bias by manipulating direct attribute influences and the overall

bias level for specific attributes;

3. Deriving a multivariate probabilistic distribution encapsulating the network’s

structure;
4. Sampling from the multivariate normal distribution;

5. Converting the generated samples into categorical-feature datasets.

A key advantage of their approach is its flexibility and domain-agnostic nature,
allowing wide applicability across different scenarios. Users can precisely define the
desired bias magnitude and correlation strength, thereby gaining full transparency
and control over dataset properties. This transparency significantly benefits the
development and assessment of fairness mitigation algorithms.

Complementing these bias-centric methods, other research has pursued fairness
integration directly during the data generation process. XU et al| (2019) propose
FairGAN-, a new generative adversarial network GAN-based framework specifically
engineered for fairness aware ML. FairGAN-+ comprises a generator for creating real-
istic samples, a classifier for class label prediction, and three discriminators assisting
adversarial learning. These classifiers and discriminators ensure generated data mit-
igate disparate treatment and disparate impact biases while preserving high utility.
Through adversarial co-training, the model satisfies multiple fairness criteria, in-
cluding [Stat. Parity] [Eq. Odds, and [Eq. Opp) demonstrating a robust trade-off
between fairness and utility.

The FairGAN+ framework (XU et al., 2019) is a generative adversarial network

designed to produce synthetic datasets that are both high-quality and fair with re-
spect to a protected attribute. Its generator creates synthetic samples conditioned
on the value of the protected attribute, allowing explicit control over group represen-
tation in the generated data. A classifier is trained in parallel to predict outcomes

using the protected attribute, while three discriminators operate simultaneously:
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the first evaluates whether a sample is real or synthetic, the second determines
whether a sample belongs to the protected group or the non-protected group, and
the third assesses whether the classifier’s predictions are independent of the pro-
tected attribute. Through the combined training of these components, FairGAN-+
encourages the production of synthetic datasets that preserve utility for downstream
tasks while mitigating biases linked to the protected attribute.

In contrast to such fairness-promoting approaches, alternative methodologies
intentionally amplify unfairness within synthetic datasets to assess the resilience of
bias mitigation methods systematically. For example, | JIANG et al. (2024) developed
a genetic algorithm-based approach specifically aimed at embedding multiple types
of unfairness, primarily studied within educational datasets but applicable across
various domains. Their method allows researchers to either create entirely new
biased datasets or inject controlled biases into existing ones, avoiding ethical and
logistical concerns associated with sensitive real-world data collection.

Through rigorous experimentation, they demonstrated that their genetic algo-
rithm method can substantially amplify unfairness, yielding an average increase of
156.3% across the fairness metrics evaluated in their study, while maintaining the
original dataset’s predictive utility virtually unchanged, as indicated by an average
variation of only 0.3% in Area Under the Curve (AUC) scores. Nevertheless, their
approach has practical limitations, especially regarding scalability, as performance
deteriorates and computational demands increase linearly with larger datasets.

Their study examined the generalization capability of the proposed method
across educational datasets with diverse characteristics and evaluated its interac-
tion with three commonly used unfairness mitigation algorithms. By design, the
method can generate datasets of varying sizes, from small samples to large collec-
tions, incorporating multiple types of unfairness and heterogeneous feature types.
This versatility enables the replication of a broad spectrum of bias scenarios, mak-
ing the approach suitable for systematically testing models trained with diverse
classifiers. The authors highlight that this adaptability is particularly valuable in
research contexts that require precise control over the type and magnitude of bias
introduced, ensuring that mitigation strategies are evaluated under clearly defined
and reproducible unfairness conditions.

When applying their methodology to real-world educational datasets, the au-
thors observed a different outcome. In this setting, nearly all datasets exhibited
fairness metric values below 0.1, which, within their evaluation framework, repre-
sents relatively low levels of measured unfairness. As a result, the application of
bias mitigation algorithms produced only marginal improvements, suggesting that
the effectiveness of these methods may be limited when baseline unfairness is already

minimal. This finding also underscores a broader limitation in current benchmark-
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ing practices: many widely used datasets, particularly in the education domain, do
not capture the diversity and severity of unfairness encountered in real-world appli-
cations. Consequently, evaluations performed exclusively on such benchmarks may
fail to reflect the true performance of mitigation algorithms in practice. This rein-
forces the need for more flexible and systematically biased synthetic datasets, such
as those generated by their approach, to enable more rigorous and representative
testing of fairness-aware methods.

Furthermore, their research highlights the insufficiency of existing benchmark
datasets, which typically exhibit very low bias levels, thus limiting the meaningful
evaluation of fairness mitigation strategies. Consequently, current benchmarks inad-
equately represent real-world unfairness complexities, underscoring the critical need
for systematically generated biased datasets for robust algorithm testing (JIANG
et all [2024). So even if new debiasing algorithms emerge, the evaluation methods
may not accurately quantify their performance if tested only on a small number of
outdated benchmarks. Researchers may therefore encounter growing challenges in
selecting among various bias mitigation algorithms, reinforcing the need for more
flexible and systematically biased benchmarks.

Taken together, the reviewed methods highlight both the diversity and the com-
plexity of generating synthetic datasets with introduced unfairness. Yet, to the best
of our knowledge, the literature lacks a method capable of systematically inducing
progressively increasing unfairness within a single base dataset, thereby enabling the
analysis of model behavior under controlled and escalating bias conditions. Existing
works predominantly focus on creating data with target bias levels or on mitigating
bias. This dissertation addresses that gap through the proposed Systematic Label
Flipping for Fairness Stress Testing, which varies unfairness levels within one dataset
and quantifies classifier sensitivity consistently, thereby supporting both robustness

assessment and fairness-specific benchmarking.

3.4 Proposed Method

This work proposes a method for generating datasets with increasing levels of un-
fairness by flipping class labels based on defined fairness-related rules. Starting with
a reference binary classification dataset, a ML is trained with this data, acting as
a probabilistic estimator, to compute the likelihood of each instance being positive.
Guided on these probabilities, a controlled amount of instance labels is flipped, tar-
geting only protected positives and privileged negatives. This introduces structured
unfairness while preserving the feature distribution, thereby enabling empirical stud-
ies on fairness—performance trade-offs in ML algorithms.

The proportion of flipped instances controls the degree of unfairness introduced,
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allowing gradual and measurable manipulation unfairness. Rather than generating
synthetic data from scratch, the method modifies the labels of existing datasets. It
is designed for binary classification settings with a single binary sensitive attribute,
consistent with prevailing assumptions in recent fairness in ML research.

Synthetic unfairness generated via label manipulation has been used to stress-
test fairness-aware algorithms but not to test fairness-unaware algorithms (KAMI-
RAN e CALDERS]| 2012; |ZHANG et al. 2022). The present method introduces
measurable unfairness by flipping labels based on group membership and classi-
fication confidence, aligning with controlled experimental paradigms suggested by
WICK et al.| (2019) and FRIEDLER et al.|(2018). The procedure explicitly targets
protected-positive and privileged-negative instances, simulating systematic condi-
tional unfairness consistent with group fairness frameworks.

The proposed method begins with a binary classification dataset D, consisting
of feature vectors X, observed labels Y, and a binary sensitive attribute A. The
restriction to a single sensitive attribute follows prevalent assumptions in fairness in
ML literature (HARDT et all [2016). After standard preprocessing, e.g., encoding
categorical features, removing invalid or missing values, a ML model, denoted the
probabilistic estimator model h,, is trained on D.

Formally, the estimator model h. is defined as a function that maps a feature
vector X to the estimated probability that an instance belongs to the positive class,
expressed as P(Y = 1| X). Accordingly, the probability of belonging to the negative
class is 1 = P(Y = 1 | X). Any probabilistic classifier, such as a Random Forest,
can be used as h.. Once trained on the dataset D, the estimator produces, for each
instance, a probability score reflecting the model’s confidence that the corresponding
label is positive. These probability scores serve as the foundation for the subsequent
label-flipping procedure, determining which instances will be modified according to
the defined fairness rules.

Not all instances are eligible for flipping. To ensure structured unfairness rather

than random noise, only positive labels from the protected group, Y =1 and A = 0,
and negative labels from the privileged group, Y =0 and A = 1, are considered for
flipping. This leads to an increase in positive outcomes for the privileged group and
an increase in negative outcomes for the protected group, directly affecting
and indirectly influencing other fairness metrics.

Consider a simplified loan approval dataset where the sensitive attribute A rep-
resents gender (A = 1 for male and A = 0 for female), and the observed label ¥ = 1
indicates loan approval. Suppose a female applicant (A = 0) who was originally
approved (Y/ = 1) is selected for flipping under the protected-positive rule, so her
label becomes Y* = 0. Similarly, a male applicant (A = 1) who was originally

denied (Y = 0) has their label flipped to Y* = 1. These controlled changes increase

32



the approval rate among males and decrease it among females, directly widening
the statistical parity gap and introducing a measurable degree of unfairness in the
modified dataset D*.

It is important to note that the unfairness introduced through this method re-
flects structured, conditional disparities rather than random noise or artifacts of
class imbalance. It increases the gap PY = 1] A=1)-PY =
1| A =0), thereby directly increasing this fairness metric and indirectly affecting
others (HARDT et al.l 2016). This design ensures that any observed deterioration
in fairness metrics can be directly attributed to the injected bias, allowing a clearer
analysis of model behavior under varying unfairness conditions.

Although the label-flipping method applies symmetric criteria for both positive
and negative labels, it does not guarantee an equal number of flips in each direction.
This asymmetry arises due to potential imbalances in the class distribution across
groups in the dataset. Consequently, the procedure may lead to changes in the
overall proportion of positive and negative labels, thereby altering the class balance.
However, such shifts remain interpretable and are bounded because the number of
labels flipped is controlled.

The sensitive attribute is not explicitly treated differently during model training;
it is handled in the same way as all other input features. Therefore, any disparities
in predicted outcomes between the original dataset D and the modified dataset D*
arise indirectly, as a consequence of interactions between group membership and
the manipulated labels, rather than from any direct use of the sensitive attribute
itself. This situation mirrors cases of indirect discrimination, in which sensitive
characteristics affect outcomes through correlations with other variables rather than
through explicit inclusion in the decision-making process (KUSNER et al., 2018).
To ensure analytical validity, the modified dataset D* preserves its integrity through

three key criteria:

Feature Distribution Unchanged. All features X remain intact, so the marginal
distribution P(X) is preserved. This removes covariate shift and ensures that

observed effects arise from label manipulation alone.

Controlled Perturbation Mass. Only a bounded proportion of labels Y are
flipped, ensuring the signal-to-noise ratio remains at acceptable levels, main-
taining model predictive capability (NORTHCUTT et al., 2021). This con-
trolled perturbation avoids severe deterioration in model performance, attribut-
ing observed changes specifically to engineered label biases rather than random

corruption.

Class—Balance Sensitivity. @ The method targets specific labels, namely,

protected-positive and privileged-negative groups, partially counterbalancing
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each other depending on the subgroup sizes. Although global class proportions
(ELKAN]| 2001) are not strictly preserved, the procedure typically avoids drastic
imbalances, since only a proportion of the labels are flipped, allowing fairness

evaluations to focus on structural biases rather than general class imbalance.

As a result, models trained on the modified dataset D* exhibit increased unfair-
ness but typically retain good predictive performance. Predictive accuracy typically
declines only modestly, as the proportion of flipped labels is controlled and the
feature distribution remains unchanged. Since the manipulated labels still follow
consistent patterns aligned with the original data structure and the feature distri-
bution is unaltered, classification patterns remain interpretable, supporting realistic
and controlled fairness—performance analysis and allows for realistic assessments
of fairness—performance trade-offs, as explored in empirical studies (KAMIRAN e
CALDERS, 2012).

To systematically study the impact of induced unfairness on model behavior,
the proposed method applies three distinct label-flipping strategies: high-confidence
flips, low-confidence flips and random flips. The first two are based on the prob-
abilistic outputs provided by h., that is, the confidence levels associated with the
predictions. Therefore, labels are flipped considering instances for which the esti-
mator exhibits either high or low confidence in its predictions. The third doesn’t
use the results from h. and instances selected randomly. Each strategy deliberately
manipulates the dataset to reflect varying degrees of structured bias, allowing com-
prehensive evaluation of how predictive certainty affects both fairness outcomes and
model performance. The detailed definitions and motivations for these strategies

are presented next:

Low Confidence Flips (LOW)). This strategy targets instances for which
P(Y =1]| X) is close to 50%, indicating that h,. is highly uncertain and the
likelihood of belonging to the positive or negative class is nearly the same. Such
cases often occur near the classification boundary or when the feature values
do not provide strong evidence for either class. The rationale for including this
strategy is to introduce bias in the most ambiguous regions of the feature space,
where label changes are less likely to contradict clear feature—label associations.
As a result, these flips are expected to have only a minor impact on overall
predictive performance while still producing measurable increases in group un-
fairness, particularly in metrics such as This setting helps isolate
the effect of unfairness from the effect on accuracy, offering insight into how
disparities between groups can grow even when the dataset’s predictive charac-

teristics are largely preserved.
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High Confidence Flips (HIGH]). This strategy selects instances where
P(Y = 1| X) is close to 100% for positive labels (or close to 0% for negative
labels), meaning that h. assigns them a very high degree of certainty. These
instances are typically those for which the features are strongly aligned with the
assigned label according to the learned decision boundary of h.. Flipping such
labels introduces deliberate contradictions between the feature patterns and the
new, manipulated labels. The motivation for including this strategy is to as-
sess the effects of injecting bias into the most predictable and stable parts of
the dataset, thereby creating highly structured unfairness that is also the most
noticeable to the model. This is expected to strongly degrade both fairness
metrics and predictive accuracy, since the classifier will be forced to learn from
labels that directly conflict with the most reliable feature—label relationships in
the data. The resulting models are anticipated to show significant shifts in con-
fusion matrix rates for both protected and privileged groups, reflecting severe

distortion of the learned decision boundary.

Random Within Sets Flips (RANDOM)). In this strategy, instances are selected
at random within the protected-positive and privileged-negative sets, without
considering the confidence scores of h.. Although the selection inside each set
is random, the restriction to these two groups means that the procedure still
injects structured unfairness, rather than pure, dataset-wide label noise. The
motivation for including this strategy is to provide a baseline for comparison
with the confidence-based approaches, allowing the evaluation of how much pre-
dictive performance and fairness metrics are affected when the same type of
group-targeted unfairness is introduced without prioritizing high or low confi-
dence instances. Because the selection does not exploit the probability outputs
of he, the effects on fairness are expected to be less systematic than in the
high-confidence case, while accuracy degradation will depend mainly on the
proportion of flipped labels and the representativeness of the randomly chosen

mstances.

These rules allow comprehensive exploration of label flipping strategies affects
fairness and predictive accuracy. This controlled label-flipping framework enables
systematic injection of unfairness into fair datasets, while preserving structural, sta-
tistical and predictive consistency. It enables the investigation of classifier behavior
under varying Pollution Rate (p), the rate at which unfairness is added, benchmark-
ing ML algorithms, and analyzing fairness—performance trade-offs under controlled,
reproducible experimental setting.

Assume the dataset contains n = 10,000 instances, of which 1,200 belong to the

protected-positive group and 800 to the privileged-negative group, so there is in total
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2,000 instances eligible for flipping. With a pollution rate p = 0.10, the algorithm
flips m, = [0.10 x 2,000] = 200 instances, positive to negative and negative to
positive. The resulting dataset D* exhibits a systematic increase in the approval
rate for the privileged group and a corresponding decrease for the protected group,
while maintaining overall data coherence and interpretability. The procedure is
formalized in Algorithm
Algorithm 1: Systematic Label Flipping for Fairness Stress Testing
Input: Dataset D = {(X;,Y;, A4;)}?_,, flip rate p € [0,1], flipping rule.
Output: Modified dataset D* with engineered unfairness.

he < train estimator on D
for each instance t =1,...,n do
i < he(Xi)
end for
Gy« {i|Yi=1AA; =0}
G {i|Yi=0AA; =1}
Sort G}, and G, by flipping rule (high, low, or random confidence)
mp < [pIGyll, M < [pl Gl

Y*Y
for each:=1,2,...,m, do Yép[ﬂ < 0 end for
for each:¢=1,2,...,m, do Yén[i} + 1 end for

return D*
The inputs of the algorithm are the dataset D, Pollution Rate p, or the propor-

tion of instance labels to be flipped, and the chosen High, Low or Random flipping
rule. It begins by training the model h., with the features X and the observed
labels Y, to calculate the probabilities 7; of each instance i belonging to the posi-
tive class. Subsequently, protected-positive G, and privileged-negative instances G,
are identified. Depending on the selected flipping rule, these instances are sorted
accordingly. Then, the predetermined proportions p of these sorted instances, m,,
and m,,, are flipped: protected positives become negatives, and privileged negatives
become positives. Finally, the label modified dataset D* is returned.

The modified dataset D* thus maintains analytical integrity by adhering to three
preservation criteria: unchanged feature distributions, controlled perturbation mass,
and sensitivity to class balance. Classifiers trained on D* can clearly illustrate fair-
ness—performance trade-offs, as structural bias can be precisely controlled, quan-
tified, and interpreted, allowing researchers to investigate how classifiers respond
to increasing bias levels, supporting reproducible, controlled fairness evaluations in
line with prior experimental best practices (KAMIRAN e CALDERS, 2012; [WICK
et al., 2019; FRIEDLER et al., |2018).
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Chapter 4
Experiments

This chapter presents the experimental methodology and the results obtained using
the proposed stress testing approach described previously. The first section intro-
duces the design of the experiments, describing the datasets, the application of the
method proposed in Chapter [3.4] the training and validation procedure with cross-
validation and hyperparameter optimization, the classifiers under analysis, and the
evaluation criteria. The second section reports the empirical findings, beginning with
a comparison of the three bias injection strategies to identify the most appropriate
for analysis, and then presenting a systematic comparison of the classifiers under the
recommended strategy, examining the evolution of performance and fairness across

models.

4.1 Experimental Methodology

This section details the complete experimental methodology designed to systemat-
ically investigate how established classification algorithms respond to progressively
unfair training data. The aim is to examine the effects of deliberate and incremen-
tal unfairness, introduced through the controlled label-flipping technique detailed in
section [3.4] on both predictive performance and fairness metrics defined in sections
and Figure [4.1] shows the complete steps of each executed experiment.
Three publicly available datasets that present a classification task were care-
fully selected based on their frequent use and relevance in fairness research. Adult
(BARRY BECKER]|1996) predicts income above a 50000 dollar per year, Bank Mar-
keting (S. MORO| 2014)) predicts subscription to a financial product, and COMPAS
(BARENSTEIN| 2019) predicts criminal recidivism. FEach dataset features a bi-
nary outcome label and a chosen binary sensitive attribute. In this work, for Adult
the sensitive attribute considered is gender, where female is the protected group
and male the privileged; for Bank Marketing, marital status, where being single

or divorced represents the protected group and married the privileged group; and
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for COMPAS, the sensitive attribute is racial background, where being African-
American is the protected group and having another race is the privileged group.

Table [4.1] summarizes the characteristics of each dataset.

Table 4.1: Details of the datasets used in this work.

Dataset Adult Bank COMPAS
# Features 98 70 10
# Instances 48842 45211 6172
Sensitive Attribute gender marital race
Positives (%) 23.93 11.70 54.49
Negatives (%) 76.07 88.30 45.51
Privileged (%) 66.85 60.19 48.56
Unprivileged (%) 33.15 39.81 51.44
Pos. Privileged (%) 20.31 6.09 29.96
Pos. Protected (%) 3.62 5.60 24.53
Neg. Privileged (%) 46.54 54.10 18.60
Neg. Protected (%) 29.53 34.20 26.91
Statistical Parity 0.195 -0.04 0.140

Before splitting and training, each dataset is preprocessed to ensure compatibil-
ity with the ML models, following a shared rationale. Categorical variables with two
categories are label-encoded directly into binary format, with one being one cate-
gory and zero being the other category. Variables with more than two categories are
converted to one-hot encoded vectors to prevent implying an inexistent ordinal rela-
tionship. Continuous numerical variables only appear in Adult and Bank Marketing
datasets with no negative number, therefore they are scaled linearly to the interval
[0,1] to promote training convergence and to have less sensitivity to the scales of the
numbers. In the COMPAS dataset, all categorical features are represented through
one-hot encoding without preserving any ordinal relationships. The only feature
kept in its original numerical form is the number of prior convictions, which retains
its quantitative meaning. These preprocessing steps are designed to maintain the
marginal distributions of features, thereby ensuring that any observed shifts in fair-
ness or performance metrics result solely from deliberate label manipulation rather
than unintended data preprocessing biases.

Following preprocessing, each dataset undergoes an identical splits. Initially, the
dataset is partitioned using a stratified 5-fold cross-validation approach. In each
fold, 80% of the data is allocated for training, while the remaining 20% forms a
fixed test set. This stratified split ensures that all models, trained on different
folds, are consistently evaluated on test partitions with stable class distributions
and proportions of sensitive groups. This process is repeated five times, each time
selecting a different fold to serve as the test set, while the remaining four folds

constitute the training set.

38



Figure 4.1: Diagram of Experimental Methodology Framework for One Complete
Experiment
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Within each of these training sets, an internal split is performed to promote
hyperparameter tuning. This internal split divides the available training data into an
80% training subset and a 20% validation subset. Importantly, this internal division
is conducted only once and does not involve additional folds. After identifying the
optimal hyperparameters through validation, the final model is retrained using the
entire training set. This procedure applies equally to both the estimator model and
the classifier models, differing only in their roles within the overall experimental
framework. Although the datasets vary in their characteristics, the described cross-
validation protocol, test-fold designation, and validation strategy remain strictly
uniform across all experiments.

The deliberate introduction of unfairness into the labels of the training subsets is
performed using the controlled label-flipping methodology described in Chapter 3.
The process begins by training an estimator model, a Random Forest (BREIMAN),
in our experiments, using the original, unmodified training data. This model

is then used to assign confidence scores to all instances that are either protected-
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positive or privileged-negative. These scores determine which instances are selected
for label flipping, according to one of two score-based strategies: [LOW] which flips
the least confident instances, and [HIGH] which flips the most confident ones. A third
strategy, RANDOM] ignores the confidence scores and selects instances uniformly
at random.

Each strategy is applied using four distinct flipping pollution rate p, correspond-
ing to 5%, 10%, 15%, and 20% of the eligible instances. This results in 12 different
biased versions of the training data, four for each strategy, plus one original version
without any label modification. All 13 datasets are treated equally in the experi-
mental design and are referred to as the Polluted Train Datasets, with the original
dataset representing the case of zero pollution rate, or p = 0. Each of the classifica-
tion models are trained using all 13 datasets. Consequently, for every fold splitting
of the original dataset and each classifier model, 13 distinct classification models are
produced.

Four widely adopted classification algorithms were selected to evaluate how pre-
dictive models respond to increasing levels of unfairness in training data. The cho-
sen classifiers are Decision Tree (QUINLAN] |1986), Logistic Regression (HOSMER!
et all 2013), Random Forest, and Neural Network implemented as a feedforward
fully connected architecture (GOODFELLOW et al., 2016). This selection reflects
a deliberate attempt to include models from distinct families of learning paradigms:
tree-based, linear, ensemble, and neural network, respectively. These models are
well-known in the literature for their computational efficiency and wide deployment
in practical applications. The Random Forest model, in particular, plays a dual role
in this study: it is used both as a classification model and as the estimator model
responsible for generating confidence scores in the label-flipping process described
earlier. These two uses are independent and generate different models. The choice of
Random Forest for the estimation step is motivated by its robustness, low variance,
and ability to generate calibrated class probabilities without requiring extensive tun-
ing, which makes it suitable for estimating reliable confidence values used to guide
the flipping mechanism.

To ensure a impartial and consistent comparison between classifiers, all hyper-
parameters are optimized using the Optuna framework with the Tree-of-Parzen-
Estimator sampler (TPE) (BERGSTRA et al., 2011). TPE is a bayesian optimiza-
tion method known for its strong performance in high-dimensional search spaces
and its ability to model complex, non-linear relationships between parameters and
objective values. We opted for a uniform tuning strategy across all models to avoid
introducing bias through unequal optimization effort. The optimization process uses
the median pruning strategy to terminate under performing trials early, thereby in-

creasing overall efficiency. Each optimization run consists of 50 trials, where can-
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didate configurations are evaluated on the validation sets using the as the
optimization objective. No fairness metric is used during this step; the goal is to
reproduce how standard ML models would behave under realistic development set-
tings where fairness considerations are often absent. This approach allows us to
isolate and analyze the fairness impact of biased data without interference from
fairness-aware interventions.

The search space for each model comprises a wide range of hyperparameters
defined based on established practices in the literature. While several parameters
are explored during the optimization process, Table [4.2] highlights only the most
influential and representative ones for each algorithm. For example, the Decision
Tree model varies in maximum depth and minimum number of samples required at
leaf nodes; the Logistic Regression model explores different regularization strengths;
the Random Forest model adjusts the number of trees, tree depth, and feature
sub-sampling rate; and the Neural Network model varies learning rate, number of
hidden units, and activation functions. After optimization, the best configuration
is retrained on the full training set and subsequently evaluated on the held-out test

set, following the experimental protocol described earlier.

Table 4.2: Hyperparameter search ranges used in Optuna optimization for each
classification algorithm.

Model Hyperparameter Ranges

Decision Tree max_depth € [2, 20|; min_samples_leaf € [1, 10]

Logistic Regression regularization strength C' € [10~%,10%] (log-uniform)

Random Forest n_estimators € [50, 300]; max_depth € [2, 20|; max_features €
0.1, 1.0]
Neural Network hidden layer sizes € [20, 200]; learning rate € [10~%, 1071]; activa-

tion function in {relu, tanh}

Model evaluation employs a comprehensive set of metrics designed to assess both
predictive performance and group fairness in a detailed and complementary way.
The primary performance metric adopted is the [MCC] chosen for its robustness
in imbalanced binary classification problems and its ability to capture the overall
quality of predictions across all quadrants of the confusion matrix. Supplementary
performance indicators include[Acc]and [}, both widely used in classification bench-
marks. For fairness assessment, the main metric is the [Eq. Odds| which compares

the true positive and false positive rates across sensitive groups. In addition,

[Parity| and [Eq. Opp.|are computed to provide complementary fairness perspectives.

To allow fine-grained interpretation of model behavior, confusion matrix rates are
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computed globally and separately for the privileged and protected groups. These
include True Positive Rate , True Negative Rate , False Positive Rate
and False Negative Rate (FNR)), all of which are calculated based solely on
the untouched test sets and the predictions of the models.

To ensure statistical robustness and account for variability, the entire experi-
mental framework described in Figure is executed independently eight times. In
each of these eight full experiments, the three datasets, Adult, Bank, and COMPAS;
are re-split into five new stratified folds. Each fold splitting generates 13 training
datasets: one baseline with no label manipulation and 12 with unfairness injected
through the Flip Labels method using combinations of four pollution rates p and
three flipping strategies. Every one of these 13 training sets is used to train four
different classification models, resulting in five folds x 13 unfair datasets x four
models = 260 trained classifiers per dataset per experiment. Repeating this pro-
cess across the 3 datasets yields 780 models per experiment. Over the course of 8
complete experimental runs, a total of 6240 models are evaluated.

In all cases, the estimator model used for computing label-flipping confidence
scores is fixed per dataset fold splitting within each experimental repetition. That
is, a new estimator is trained for each fold splitting of each dataset in every experi-
ment, but remains shared across all flipping strategies and pollution rate applied to
that specific fold. For each combination of dataset, flipping strategy, threshold, and
classifier, the evaluation metrics are averaged across all 5 folds and the 8 experimen-
tal runs, and the corresponding standard deviations are computed, resulting in 156
results in total for each metric, being 12 baseline results for each unmodified dataset
and classifier, all the other 144 results use a flipping strategy and a threshold. This
aggregation procedure ensures that the final results reflect consistent trends and are
not biased by any particular data split or random sampling variation.

All computational experiments were executed on a Hewlett-Packard Victus 15-
inch notebook equipped with an AMD Ryzen 7 5800H processor and 16 GB of DDR4
RAM. The software environment was configured on Windows 11, using Python ver-
sion 3.13.3, with scikit-learn version 1.7 for model implementation and Optuna ver-
sion 4.0.0 for hyperparameter optimization. This experimental setup was carefully
structured to isolate the effects of label bias by keeping all other variables constant
throughout the framework. As a result, any observed changes in predictive per-
formance or fairness metrics can be confidently attributed to the deliberate and
progressive manipulation of the training labels. The following section presents the
results obtained under these controlled conditions and offers an in-depth analysis of

how each classification algorithm behaves as the level of data unfairness increases.
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4.2 Results and Discussion

This section presents and discusses the experimental results obtained through the
systematic label-flipping methodology. The analysis is organized into two comple-
mentary perspectives. First, the focus is on the flipping strategies themselves, exam-
ining how the three procedures, [LOW], [HIGH| and [RANDOM], differentially affect

predictive performance and fairness, thereby identifying the most suitable approach

for controlled stress testing. Second, the focus shifts to the classifiers, compar-
ing how Decision Tree, Logistic Regression, Random Forest, and Neural Network
models respond under increasing levels of unfairness in order to assess their rela-
tive robustness. Together, these analyses provide a comprehensive view of both the
methodological choices involved in bias introduction and the intrinsic sensitivities of
the classifiers, offering insights into the fairness—performance trade-offs that emerge

when training data is systematically polluted.

4.2.1 Flipping Strategies

In the previous section, the experimental methodology was described in detail, in-
cluding the datasets, classifiers, evaluation metrics, and the procedure used to in-
troduce unfairness into the training data. Building on this foundation, the present
subsection focuses on the analysis of the unfairness injection approaches. The objec-

tive is to systematically examine how [LOW] [HIGH], and [RANDOM] influence both
performance and fairness metrics. This analysis is essential to determine which ap-

proach provides the most consistent basis for evaluating, in a controlled manner,
the sensitivity of classification algorithms to progressive levels of unfairness in the
training data.

Figures [4.3] and summarize the main results, presenting predictive per-
formance and fairness metrics under the three injection methods, [LOW] [HIGH] and
[RANDOM] All curves are plotted against increasing values of p, with higher values
of [Acc] [F1] and [MCC] indicating better predictive performance, and higher values
of [Stat. Parity], [Eq. Opp. and [Eq. Oddg reflecting greater unfairness. This joint

representation facilitates a direct visualization of trade-offs, showing how pollution

simultaneously impacts performance and fairness, while also exposing specific ex-
ceptions and intersection points. Complementary results for [TPR], [TNR], [FPR] and
are provided in Appendix [A]
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Figure 4.2: Performance and Fairness Metrics of the classifiers trained with the

Adult dataset.
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Figure 4.3: Performance and Fairness Metrics of the classifiers trained with the Bank

dataset.
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Figure 4.4: Performance and Fairness Metrics of the classifiers trained with the

COMPAS dataset.
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The three unfairness injection approaches were designed with distinct expecta-
tions regarding their impact on predictive performance and fairness. In the [LOW]
method, flipping labels of low-confidence instances was expected to produce a sharp
increase in unfairness while preserving predictive performance, since the altered ex-
amples are those about which the classifier is already uncertain. In contrast, the
[HIGH] method was anticipated to generate more moderate increases in unfairness
but accompanied by substantial declines in performance, because highly confident
predictions are directly contradicted by the injected flips, undermining core pat-
terns of the data. The RANDOM] method was expected to lie between these two
extremes, producing intermediate effects both in terms of performance loss and
unfairness growth, since label corruption is not guided by confidence but applied
indiscriminately.

The experimental results corroborate these expectations. When analyzing the
variation of predictive performance and fairness metrics with increasing values of p,
the curves are predominantly monotonic, without sudden collapses or unexpected
reversals. In most cases, decreases in predictive performance are accompanied by
increases in unfairness, reflecting the intended trade-off induced by systematic label
flipping. The [LOW] method consistently led to substantial rises in unfairness while
maintaining relatively stable predictive performance, indicating that the main pre-
dictive patterns of the dataset were largely preserved. The[HIGH method caused the
steepest drops in performance, alongside smaller increments in unfairness, confirm-
ing the disruptive effect of flipping high-confidence instances. Finally, the RANDOM|
method showed intermediate behavior, with moderate changes in both dimensions.
These general trends validate the logic underlying each approach and make clear that
the LOW] method is the most appropriate for fairness stress testing. By maintaining
predictive performance while substantially amplifying unfairness, it preserves the es-
sential predictive structure of the dataset, allowing the effects of unfairness injection
to be studied in a controlled manner without confounding losses in accuracy.

One exception to the overall monotonic behavior occurs in the “S”-shaped curves
observed for[Acc] [F1], and when the Logistic Regression classifier is trained on
the Adult dataset under the strategy, as shown in Figure (d). In this case,
there is a small decrease at p = 0.05, followed by a sharper drop at = 0.10, and then
a partial recovery beginning at = 0.15. This behavior can be explained by the char-
acteristics of Logistic Regression, which employs a linear decision boundary that is
strongly influenced by high-confidence instances (AHFOCK e MCLACHLAN, 2021]).
When only a small fraction of such points are flipped, the model undergoes minor ad-
justments. As the number of corrupted high-confidence instances increases, however,
the boundary shifts more abruptly, leading to a sharper decline in performance. At

higher levels of pollution, the flipped labels become more evenly distributed across
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both classes, enabling the model to partially recalibrate and regain stability, which
accounts for the observed recovery in performance.

Another exception occurs in the results for the Bank dataset, where
an initial decrease is observed at p = 0.05, followed by a steady increase starting at
= 0.10, as shown in Figure [£.3] This behavior is directly related to the original dis-
tribution of outcomes in the dataset, where the protected group initially contains a
larger proportion of positive instances compared to the privileged group. When un-
fairness is first injected, label flipping removes some of these positive outcomes from
the protected group while adding positive outcomes to the privileged group. This
temporary rebalancing reduces the disparity between the marginal positive rates of
the two groups, leading to the initial drop in As the pollution rate
increases further, however, the flips accumulate in a way that favors the privileged
group while reducing positives in the protected group, reintroducing and amplifying
the disparity. Consequently, the metric resumes its monotonic rise.

The last exception involves [F1, where a slight increase is observed under the
[LOW] and RANDOM] strategies in the Adult dataset. This occurs when marginal
adjustments to the decision boundary increase at a negligible cost in [Prec.
thereby improving[F1] In practice, flipping low-confidence or randomly chosen points

may cause the classifier to slightly widen its decision boundary, capturing additional
true positives without introducing a significant number of false positives. This effect

is absent under the [HIGH] strategy because flipping high-confidence points directly

damages the classifier’s strongest predictions, causing losses in both |Prec.|and [Rec.]

which prevents any temporary gain in [F1} In the Bank dataset, this phenomenon
is minimal or absent because its feature space is less sensitive to small shifts in the
boundary, and the marginal cases flipped do not meaningfully improve the balance
between [Prec.| and [Rec] In the COMPAS dataset, this effect does not occur in

practice, since its structure provides very few marginal cases close to the decision

boundary. The data distribution is more polarized and less influenced by small
perturbations, which prevents marginal flips from generating improvements in
without harming [Prec] making any increase in [F'I] negligible.

Taken together, the predominantly monotonic trends and the few exceptions ob-
served indicate that the essential behavior of the models under increasing pollution
can be reliably captured by comparing the extreme values of p. The identified ex-
ceptions are local phenomena that do not alter the overall direction of the results
and therefore do not compromise this mode of analysis. For this reason, examining
the outcomes at = 0.00 and = 0.20 is sufficient to summarize the dominant tenden-
cies, since these two points reflect the transition from the unbiased baseline to the
highest level of injected unfairness (MENON et al., [2015). Table reports the cu-
mulative differences between these two conditions, focusing on [MCC| and [Eq. Odds),
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the primary indicators of predictive performance and fairness in this study. The
values highlighted in bold correspond to the lowest observed [MCC| and the highest
observed [Eq.  Odds, underscoring the conditions where predictive performance is
least compromised and unfairness is most severe. This approach provides a concise
yet faithful representation of the results, avoiding overinterpretation of local fluctu-
ations while maintaining consistency with the dominant trends (BAROCAS et al.,
2023).

Table 4.3: Cumulative Results for MCC|and [Eq. Odds| (mean =+ std) from p = 0.00
to p = 0.20. All bold values correspond to the smallest loss in [MCC] or the largest

increase in [Eq. Odds} The average is computed across all datasets.

Dataset Strategy |MCC| |Eq. Odds|
Adult LOW —0,024 + 0,010 0,288 £ 0,020
RANDOM| —0,014 40,011 0,180 + 0,024
HIGH —0,213+0,012 0,110 £ 0,015
Bank LOW| —0,123+0,054 0,357 0,113
RANDOM| —0,041 + 0,023 0,139 £ 0,038
HIGH —0,205+0,036 0,136 + 0,087
COMPAS [LOW —0,026 + 0,020 0,230 =+ 0,049
RANDOM| —0,042+0,025 0,304 + 0,050
HIGH —0,073+£0,029 0,193 + 0,067
Average |[LOW —0,058 £0,028 0,292 + 0,06
RANDOM| —0,032+ 0,02 0,208 + 0,037
HIGH —0,164 £ 0,026 0,146 £ 0,056

The general pattern remains consistent with the individual analyses presented
before. Regarding performance, systematically preserves accuracy, [F]]
and more effectively than the other strategies, while LOW] occupies an in-
termediate position, but not so distant from [RANDOM], and [HIGH] produces the
steepest degradation across all datasets. In terms of fairness, particularly for [Eq]
[Opp.| and [Eq. Odds, [LOW] tends to yield the greatest increase, follows
closely, and [HIGH] consistently results in the smallest gains, most notably in the
Adult and Bank datasets.

Although this trend is dominant, there are exceptions. In COMPAS with Logis-
tic Regression, the HIGH]strategy can surpass[LOW]and RANDOM]|in [Stat. Parity]
[Eq. Opp. and [Eq. Oddsl This occurs because the COMPAS dataset is relatively

small and strongly correlated with the sensitive attribute, so aggressive label flipping

disrupts misleading correlations that a linear classifier would otherwise exploit, pro-
ducing a counterintuitive improvement in fairness metrics. In Adult with Decision
Tree under [HIGH| [Eq. Opp.] may decrease slightly. This is explained by the high

variance and instability of decision trees, which makes them highly sensitive to noise

injection, causing fairness metrics to fluctuate even when larger gains are expected.
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In Bank with Logistic Regression at p = 0.20, under [LOW] can fall below
the value observed under [HIGH] This reflects the fact that, at high levels of label
flipping, the intermediate strategy may distort the linear decision boundary more
than the extreme strategy, producing an anomalous but localized advantage in pre-
dictive performance. Finally, in COMPAS the curves of [LOW] and
[RANDOM] intersect at p = 0.05 and other points. This crossing is due to the inter-
action between random and confidence-based flips in a dataset with limited size and
strong feature correlations; while RANDOM] initially perturbs fewer critical exam-
ples, [LOW]regains the advantage as the pollution rate increases and more of the most
influential borderline cases are systematically corrected. Overall, these exceptions
highlight that the relative effectiveness of each strategy is not uniform but depends
on the interplay between dataset properties, classifier characteristics, and the nature
of the fairness metric. They do not undermine the general patterns observed, but
rather illustrate that the stress testing method can expose subtle behaviors that are
otherwise hidden when fairness interventions are applied in a homogeneous way.

Regarding the standard deviations, clear differences emerge across datasets. In
Adult, deviations are consistently the smallest in both performance and fairness
metrics, reflecting the stability provided by its large size and relatively balanced
distribution. Effects remain highly consistent across folds and repetitions. In Bank,
deviations are considerably larger due to its greater heterogeneity and class im-
balance. This is particularly evident in [Eq. Oppl] where the average standard
deviation in Bank is almost three times higher than in Adult, and in [Eq.  Odds|
where variation is also markedly stronger, while remains comparatively
stable. For performance, displays low variance, whereas [F1] and fluctuate
more; for instance, the standard deviation of in Bank is more than twice that
of Adult, and [MCC] also exhibits a deviation more than double. The COMPAS
dataset, being much smaller and strongly correlated with the sensitive attribute,
shows the opposite pattern: deviations in performance metrics are generally low,
but fairness metrics are highly unstable, especially [Stat. Parity], whose standard de-
viation is nearly four times higher than in Adult, reflecting the extreme sensitivity
of marginal positive rates to small shifts in the decision boundary. When comparing
metrics across datasets, [MCC]| varies substantially not only in COMPAS but also in
Bank, while [FT] tends to fluctuate more strongly in Bank because of its dependence
on precision and recall under class imbalance. Altogether, these patterns indicate

that Adult is the most stable dataset, Bank is the most variable in fairness metrics,

and COMPAS is the most unstable in terms of [Stat. Parity]
Analyzing the results of [TPR] [TNR], [FPR], and [FNR] available in Appendix [A]

for the full dataset and for the privileged and protected subsets, it can be observed

that these metrics are generally more stable, with even fewer exceptions than the
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performance and fairness metrics. This stability occurs because they are directly
tied to the confusion matrix, and fairness metrics are derived from their differences
across groups. In the full dataset, [HIGH] produces the strongest changes, with a
marked increase in [FPR] and a reduction in [TNR] For example, in Adult, [TPR] falls
to around 0.59 and [FNR] rises to about 0.41 under [HIGH] compared to [TPR] near
0.70 and [FNR] near 0.30 under LOW] As a result, [HIGH]leads to strong performance
degradation and, on average, smaller increments in unfairness. [LOW] acts mainly
on the decision boundary, shifting it toward more positive classifications. In Adult
this produces higher recall, with [TPR] around 0.70 and [FNR] about 0.30.

In Bank, however, [LOW] creates a non-monotonic curve: [TPR] rises slightly
to 0.42 at intermediate levels before declining again, while falls to 0.58 and
then reverses. This occurs because the Bank dataset is more heterogeneous and
imbalanced, so flipping low-confidence labels can initially correct borderline cases
before the accumulation of noise reverses the effect. In COMPAS, [TPR] decreases
(to about 0.71) and increases (to about 0.29) under while yields
better recall ~ 0.74, ~ 0.26). Since the effect is asymmetric across
groups, [Eq. Opp. and [Eq. Odds| grow more under [LOW] than under
or [HIGH] Finally, RANDOM] produces small, distributed shifts that keep [TPR],
[FNR], [TNR] and [FPR] more stable, leading to flatter curves. In Bank, for instance,
maintains the highest [TNR] at about 0.97, corresponding to the lowest
[EFPR] of only 0.03. In Adult, exceptions appear in [TPR] and [FNR] where small

changes occur even under distributed flips, showing that noise can still perturb the

balance between recall and false negatives at certain thresholds.

In the privileged subset, label flips add positive instances, which under [HIGH]lead
to increased [FPR] and reduced [TNR] For example, in Adult privileged groups, [FPR]
rises to about 0.21 and [TNRI falls to about 0.79 under [HIGH! [TPR] and [FNRI for the
privileged vary less, but still respond to the boundary shift. An exception arises in
COMPAS with all classifiers except Logistic Regression, where the effect is mitigated
by the dataset’s small size and high correlation structure. In the protected subset,
flips remove positive instances, so under [HIGH] the expected pattern emerges: [TPR]
decreases and increases, e.g., in COMPAS protected groups, whereas[TNR]and
[FPR]remain relatively stable. Importantly, the greater stability of results in the full
dataset compared to privileged and protected subsets is not exclusive to [HIGH] but
occurs across all strategies. This is because, when aggregated, opposing shifts in the
two groups partially cancel each other, reducing variability at the overall level.

In conclusion, the evidence consistently indicates that [LOW]is the most appropri-
ate strategy for systematically injecting unfairness in classification tasks. It achieves
the strongest and most consistent increases in group unfairness, while maintaining

only moderate reductions in predictive performance. Its deterministic nature fur-
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ther ensures reproducibility, which is essential for controlled experimentation and
for building reliable baselines in fairness research. By contrast,  RANDOM] intro-
duces instability: although it sometimes produces smaller losses in accuracy, it is
non-deterministic and can also yield worse outcomes in performance without system-
atically maximizing unfairness. [HIGH]severely degrades predictive accuracy and, on
average, produces smaller improvements in fairness, which makes it ill-suited for the
analysis of practical trade-offs. The few exceptions observed are explainable and
statistically limited, and therefore do not challenge this overall conclusion. For
these reasons, [LOW] should be regarded as the recommended baseline method for
future studies aiming to analyze, compare, or benchmark classifier behavior under

progressively increasing levels of unfairness.

4.2.2 Classifiers

Having established in the previous section that the [LOW] strategy provided the
most consistent and interpretable results among the bias introduction methods, the
following analysis focuses exclusively on this approach. By fixing the strategy, it
becomes possible to investigate in greater depth how different classifiers react to in-
creasing levels of induced unfairness. This section therefore compares the behavior
of the four classifiers under study, namely Random Forest, Neural Networks, Logis-
tic Regression, and Decision Tree, in order to identify how their performance and
fairness metrics evolve as the proportion of label flipping grows. In this way, the
analysis shifts from contrasting bias introduction strategies to examining the rela-
tive robustness of the classifiers themselves in the face of systematically increasing
unfairness.

The presentation of the results follows the same structure adopted in the previous
section. Figure displays the variation of the main performance and fairness
metrics as the proportion of injected unfairness increases. However, while in the
earlier analysis the curves represented the different bias introduction strategies, here
each line corresponds to one of the four classifiers. This allows a direct comparison of
their robustness in maintaining predictive performance and fairness simultaneously.
In particular, the analysis highlights how Random Forest, Neural Networks, Logistic
Regression, and Decision Tree evolve under the [LOW] strategy, thus enabling a
clearer understanding of their relative sensitivity to systematic unfairness.

The analysis of the LOW]strategy shows that the classifiers behave in a broadly
similar way under progressive bias. The main exception is Logistic Regression,
which proved more sensitive, particularly in the COMPAS dataset, where it ex-
hibited greater degradation of performance and fairness. Decision Trees, contrary

to common expectations, did not emerge as the weakest model, showing slightly
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Figure 4.5: Performance and Fairness Metrics of all classifiers trained with datasets

modified by the

strategy.
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lower sensitivity to unfairness compared to the others. Random Forest and Neural
Networks displayed results close to each other, with marginally higher robustness
overall. Although the differences are small in magnitude, these tendencies highlight
Logistic Regression as the most vulnerable model in the Low scenario.

Across all datasets, the introduction of unfairness through the [LOW] strategy
produces a consistent trade-off between predictive performance and fairness. As
the p increases, both [Acc]and [MCC| show a clear and progressive decline, while

decreases more slowly and remains comparatively stable. At the same time, fairness

metrics deteriorate monotonically, with [Stat. Parity] [Eq. Opp. and [Eq. Odds|

increasing steadily as more bias is introduced. This confirms that higher levels of
label flipping systematically reduce the ability of classifiers to maintain predictive
quality together with equitable treatment of groups.

The confusion matrix rates provide further insight into the structural impact of
the [LOW] strategy on group outcomes. For the privileged group, the [TPR]increases
steadily with the p, accompanied by a reduction in the [FNR] while the [TNR] de-
creases in parallel with a rise in the [FPR] The protected group exhibits the opposite
behavior, with a systematic decline in the [TPR]and a corresponding increase in the
[ENR], while the [TNR] rises and the [FPR] diminishes. These mirrored movements
directly reflect the bias injection procedure, which flips privileged negatives and
protected positives during training. When aggregated, the overall dataset follows
these trends in attenuated form, with a mild increase in the global [TPR]and a slight
decrease in the global [TNR] with variations depending on the dataset distribution.
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The analysis of standard deviations highlights how the stability of classifiers
is affected by increasing levels of unfairness. For performance metrics, variability

grows moderately with higher p, while for fairness metrics the dispersion is more

pronounced, especially in |[Eq. Opp.| and [Eq. Odds. This indicates that, beyond

average declines in performance and fairness, the outcomes of classifiers also become
less predictable. Among the models, the Neural Network and Decision Tree tend
to exhibit larger fluctuations, Random Forest remains the most stable overall, and
Logistic Regression shows intermediate behavior.

Considering jointly the evolution of performance, fairness, and stability, the[LOW]
strategy reveals that the classifiers behave in broadly similar ways, but with im-
portant distinctions. Logistic Regression stands out as the most sensitive, with
the largest increases in unfairness metrics and consistent drops in predictive perfor-
mance, particularly in the COMPAS dataset. Neural Networks show an intermediate
profile, with moderate losses that grow as bias intensifies. Decision Trees and Ran-
dom Forests, in contrast, are comparatively more robust, maintaining lower levels of
unfairness and more stable performance, with Random Forest slightly outperforming
the others in consistency.

From a practical perspective, these findings suggest that ensemble tree-based
models, such as Random Forest, are attractive options for contexts where stability in
both predictive performance and fairness is desirable, especially when data quality
cannot fully guarantee the absence of structural bias. Decision Trees, while less
robust than their ensemble counterpart, still display competitive levels of fairness
and may be suitable when interpretability is prioritized, provided that appropriate
mitigation techniques are applied.

Logistic Regression, however, emerges as the classifier that most clearly requires
fairness interventions. Its linear structure makes it more directly exposed to cor-
relations between sensitive attributes and the target variable, which explains why
its vulnerabilities become particularly pronounced in datasets such as COMPAS,
where baseline disparities are stronger. Neural Networks, on the other hand, oc-
cupy an intermediate position: although not as fragile as Logistic Regression, they
exhibit non-negligible sensitivity that calls for careful monitoring when deployed in
fairness-critical domains.

Logistic Regression, however, emerges as the classifier that most clearly requires
fairness interventions. Its linear structure makes it more directly exposed to cor-
relations between sensitive attributes and the target variable, which explains why
its vulnerabilities become particularly pronounced in datasets such as COMPAS,
where baseline disparities are stronger. Neural Networks, on the other hand, oc-
cupy an intermediate position: although not as fragile as Logistic Regression, they

exhibit non-negligible sensitivity that calls for careful monitoring when deployed in
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fairness-critical domains.

A key reason for the distinctive behavior of Logistic Regression lies in its global
modeling nature. Because the model defines a single linear decision boundary that
depends on all training instances simultaneously, even small local perturbations in
the data, such as the label flips introduced by the [LOW] strategy, can shift the
parameters of the entire model. This global parameter coupling makes Logistic Re-
gression particularly sensitive to localized biases, as modifications affecting a specific
subset of examples propagate across the whole decision surface.

In contrast, models like Decision Trees and Random Forests react to such pertur-
bations in a more localized manner, as changes typically affect only a few branches
or subtrees. Similarly, Neural Networks, while nonlinear, tend to absorb local dis-
tortions through small adjustments in multiple weights, distributing the impact
throughout the network. Consequently, Logistic Regression exhibits a uniquely am-
plified response to local unfairness, which explains its sharper degradation under
progressive bias.

Overall, the comparative analysis shows that the choice of classifier has a direct
influence on how sensitive the system will be to unfairness in the data. While no
model is immune to the effects of bias injection, the magnitude of degradation and
the degree of variability differ substantially across learning paradigms. These differ-
ences highlight the importance of aligning classifier selection with the expected level
of bias in the data and with the available capacity for implementing fairness inter-
ventions. In practice, adopting more robust classifiers such as Random Forest can
reduce the burden of corrective measures, whereas relying on sensitive models such
as Logistic Regression requires a proactive and systematic approach to fairness mit-
igation, especially in datasets with strong correlations between sensitive attributes

and outcomes, such as COMPAS.
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Chapter 5
Conclusions

This chapter concludes the dissertation by revisiting the main objectives, summariz-
ing the methodological and empirical findings, and highlighting the scientific contri-
butions of the study. A novel framework for fairness stress testing was introduced,
implemented, and applied to multiple datasets and families of classifiers. The exper-
imental analysis revealed systematic patterns in how fairness metrics and predictive
performance evolve under progressive bias injection, providing methodological in-
novation and empirical evidence on the robustness of ML models. These findings
reinforce the relevance of stress testing as a diagnostic tool for understanding model
behavior under unfair conditions and contribute to advancing the broader field of

fairness in ML.

5.1 Results and Contributions

This dissertation presented a systematic investigation of the interaction between
algorithmic fairness and classification performance under controlled injections of
bias into training data. By means of a complete experimental framework, it was
possible to analyze in depth how classifiers react to progressively unfair conditions,
revealing tendencies that conventional evaluation frameworks are often unable to
capture. The contributions of this work are both methodological and empirical,
providing new tools and insights for the study of fairness in ML.

Although recent works have advanced fairness evaluation and bias generation
methods, the literature still lacks systematic analyses comparing how different clas-
sifiers respond to progressively induced bias within a unified experimental frame-
work. This dissertation directly addresses this gap by combining controlled bias
introduction with comparative assessments of classifier robustness, thereby provid-
ing an empirical foundation for understanding how unfairness propagates differently

across model architectures.
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The first major contribution is methodological. A new approach, named System-
atic Label Flipping for Fairness Stress Testing, was proposed and implemented to
inject bias into datasets in a structured and reproducible way. Unlike unsystematic
perturbations or uncontrolled noise, this method establishes predefined strategies
and thresholds for selectively flipping labels of protected and privileged groups. This
systematic procedure enables classifiers to be subjected to fairness-oriented stress
tests, analogous to the robustness assessments commonly used in other engineering
domains. The framework allows not only the observation of a model’s fairness at a
given point, but also its robustness trajectory as data unfairness grows, offering a
new perspective for both researchers and practitioners.

A second contribution is the implementation of a reproducible and extensible
experimental framework. All stages of the process — preprocessing, model train-
ing, hyperparameter tuning with Optuna, bias injection, metric computation, and
visualization — were integrated in a modular architecture, designed to facilitate
reuse and extension. The framework consolidates results with averages and stan-
dard deviations across folds, ensuring statistical rigor. This framework can serve as
a foundation for future research, enabling the community to stress test additional
datasets, models, or fairness definitions in a transparent and replicable manner.

A third important contribution is the comparative evaluation of different label-

flipping strategies. By contrasting approaches such as[LOW| [HIGH] and RANDOM)|,
the study identified how alternative ways of injecting bias influence the detection

of model vulnerabilities. This analysis showed that strategies differ in the extent to
which they stress the classifiers, providing guidance on which procedures are more
effective in exposing fragility in fairness.

The fourth contribution lies in the empirical findings regarding classifier robust-
ness. Experiments were conducted on three benchmark datasets widely used in
fairness research, Bank Marketing, Adult Income, and COMPAS Recidivism, ap-
plying the stress testing methodology across incremental thresholds of bias. The
results showed that, overall, models behaved in a broadly similar way, but with
Logistic Regression emerging as the most sensitive, particularly in the COMPAS
dataset, where fairness metrics deteriorated more sharply. Decision Trees displayed
slightly greater resilience, while Random Forest consistently proved the most stable,
combining relatively high predictive performance with lower fairness degradation.
Neural Networks occupied an intermediate position, showing moderate robustness
but also higher variability across metrics. These results enrich the understanding
of how different algorithmic structures respond when exposed to unfair data, high-
lighting that ensemble methods tend to be more robust, whereas linear models are
the most vulnerable.

In summary, the main results of this dissertation can be expressed as follows:
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the proposed methodology successfully produced systematic stress tests for fairness;
alternative bias injection strategies were evaluated and compared; Random Forest
emerged as the most robust classifier, while Logistic Regression was the most sen-
sitive, with Neural Networks and Decision Trees occupying intermediate positions;
fairness and accuracy were shown to interact in non-trivial ways; and a modular,
reproducible framework was delivered as a research artifact. Taken together, these
contributions advance both the methodological and empirical knowledge of fairness
in ML, emphasizing that robustness to unfair data is as important as static fairness

evaluation at deployment.

5.2 Future Research

The findings and contributions of this dissertation open several avenues for future re-
search. Although the proposed methodology and experiments offered solid evidence
on the robustness of different classifiers under fairness stress testing, important chal-
lenges remain and new opportunities deserve to be pursued.

A natural extension of this work is to broaden the scope of datasets beyond the
three benchmarks studied here. While Adult, Bank Marketing, and COMPAS are
well established in the fairness literature, their particularities limit the generalization
of conclusions. Applying the proposed framework to domains such as healthcare,
credit scoring, recruitment, or recommendation systems could reveal new insights
into the behavior of fairness-sensitive models in contexts with different statistical
properties and ethical implications. Moreover, datasets containing multiple sensi-
tive attributes would allow the study of intersectional fairness, a pressing and still
underexplored problem.

Another direction is the inclusion of a wider range of models in the evaluation.
This dissertation focused on classical classifiers such as Random Forest, Decision
Tree, Logistic Regression, and Neural Networks. However, recent advances in deep
learning, gradient boosting ensembles, and transformer-based architectures may dis-
play distinct patterns of robustness. Incorporating such models into the stress test-
ing framework would enable a more comprehensive understanding of the trade-offs
between accuracy and fairness in state-of-the-art systems.

Methodological refinements also represent promising extensions. The systematic
label flipping developed in this work proved effective and reproducible, but other
strategies for bias injection could be explored. Perturbations at the feature level,
the creation of synthetic correlations between sensitive attributes and outcomes, or
adversarial modifications guided by optimization procedures are possible alterna-
tives. These extensions could expose new vulnerabilities and expand the diagnostic

power of stress testing.
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An additional line of research involves integrating mitigation techniques directly
into the stress testing process. In this dissertation, models were analyzed without
explicit fairness constraints in order to evaluate their natural robustness. Future
work could embed pre-processing, in-processing, and post-processing interventions
into the framework, assessing their effectiveness under progressively biased data.
This would provide a clearer picture of the real capacity of mitigation strategies to
preserve equity in adverse scenarios.

Finally, applying the methodology in dynamic and real-world contexts is a cru-
cial frontier. Fairness challenges often arise from temporal shifts in data distribu-
tions, feedback loops, and strategic responses by individuals subject to algorithmic
decisions. Extending fairness stress testing to streaming data, sequential decision-
making, or reinforcement learning settings could deliver a richer and more realistic
perspective on robustness. Such studies are particularly relevant in high-stakes ap-
plications where fairness must be maintained continuously rather than only at the
point of deployment.

In conclusion, this dissertation established a foundation for fairness stress test-
ing through systematic label flipping and rigorous experimentation. Building on this
foundation, future research can expand datasets and models, refine bias injection
methods, integrate mitigation strategies, and address dynamic environments. To-
gether, these directions can advance the state of knowledge in Fairness in ML and
contribute to the development of systems that are both accurate and resiliently fair

across contexts and over time.
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Appendix A

Error and Accuracy Rates under
Label Pollution

This appendix presents the evolution of the confusion-matrix rates (TPR] [TNR]
FPR| [FNR]) under different levels of label pollution for all datasets and classifiers.
These results complement the main text, providing detailed plots for reproducibility

and further inspection.
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Figure A.2: [TPR} [TNR] [FPR| and [FNRfor the Bank (full set).
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Figure A.3: [TPR| [TNR] [FPR| and [FNR/ for the COMPAS (full set).
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Figure A .4: |TPR|, |TNR|, |FPR| and |FNRI for the Adult (privileged set).
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Figure A .4: |TPR|, |TNR|, |FPR| and |FNRI for the Adult (privileged set).
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Figure A.5: |TPR|, |TNR|, |FPR| and |FNR| for the Bank (privileged set).
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Figure A.5: |TPR|, |TNR|, |FPR| and |FNR| for the Bank (privileged set).
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Figure A.6: |TPRL |TNR|, |FPR| and |FNR| for the COMPAS (privileged set).
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Figure A.6: |TPRL |TNR|, |FPR| and |FNR| for the COMPAS (privileged set).
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Figure A.7: [TPR} [TNR] [FPR| and [FNRfor the Adult (protected set).
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Figure A.7: [TPR} [TNR] [FPR| and [FNRfor the Adult (protected set).
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Figure A.8: [TPR} [TNR] [FPR| and [FNRfor the Bank (protected set).
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Figure A.8: [TPR} [TNR] [FPR| and [FNRfor the Bank (protected set).
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Figure A.9: [TPR]| [TNR| [FPR| and [FNR| for the COMPAS (protected set).
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Figure A.9: [TPR]| [TNR| [FPR| and [FNR| for the COMPAS (protected set).

0.4
1.0 + Low
—4— High
—$— Random 0.3
0.9
a4 a4
EI &Io 2
$0.8 °
x x
0.1
0.7
0.0
0.61— | | | | | |
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
1.0
06
x 0.8 «
Z o4
J—JI “I
206 E
e 0.2
0.4
0.0
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
Pollution Rate p
(¢) Neural Network (MLP)
0.4
1.0 —4— Low
—4— High
—— Random 0.3
0.9
o o
EI &Io.z
-
g 08 2
o o
0.1
07
0.0
0.6— | | | | | |
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
1.0
06
x 0.8 "
g 04
! o
206 ne_
e 0.2
0.4
0.0
0.00 0.05 0.10 015 0.20 0.00 0.05 0.10 015 0.20

Pollution Rate p

(d) Logistic Regression

95




Figure A.10: [TPR] [TNR| [FPR|and [FNR] for the strategy (Full Datasets).
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Figure A.11: [TPR] [TNR] [FPR]and [FNR]for the strategy (Privileged Subsets).
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Figure A.12: [TPR| [TNR] [FPR|and [FNR|for the strategy (Protected Subsets).
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